Search Results

Now showing 1 - 4 of 4
  • Item
    Tropospheric and stratospheric wildfire smoke profiling with lidar: mass, surface area, CCN, and INP retrieval
    (Katlenburg-Lindau : European Geosciences Union, 2021) Ansmann, Albert; Ohneiser, Kevin; Mamouri, Rodanthi-Elisavet; Knopf, Daniel A.; Veselovskii, Igor; Baars, Holger; Engelmann, Ronny; Foth, Andreas; Jimenez, Cristofer; Seifert, Patric; Barja, Boris
    We present retrievals of tropospheric and stratospheric height profiles of particle mass, volume, surface area, and number concentrations in the case of wildfire smoke layers as well as estimates of smoke-related cloud condensation nuclei (CCN) and ice-nucleating particle (INP) concentrations from backscatter lidar measurements on the ground and in space. Conversion factors used to convert the optical measurements into microphysical properties play a central role in the data analysis, in addition to estimates of the smoke extinction-to-backscatter ratios required to obtain smoke extinction coefficients. The set of needed conversion parameters for wildfire smoke is derived from AERONET observations of major smoke events, e.g., in western Canada in August 2017, California in September 2020, and southeastern Australia in January-February 2020 as well as from AERONET long-term observations of smoke in the Amazon region, southern Africa, and Southeast Asia. The new smoke analysis scheme is applied to CALIPSO observations of tropospheric smoke plumes over the United States in September 2020 and to ground-based lidar observation in Punta Arenas, in southern Chile, in aged Australian smoke layers in the stratosphere in January 2020. These case studies show the potential of spaceborne and ground-based lidars to document large-scale and long-lasting wildfire smoke events in detail and thus to provide valuable information for climate, cloud, and air chemistry modeling efforts performed to investigate the role of wildfire smoke in the atmospheric system. © 2021 Albert Ansmann et al.
  • Item
    The dual-field-of-view polarization lidar technique: a new concept in monitoring aerosol effects in liquid-water clouds – theoretical framework
    (Katlenburg-Lindau : EGU, 2021) Jimenez, Cristofer; Ansmann, Albert; Engelmann, Ronny; Donovan, David; Malinka, Aleksey; Schmidt, Jörg; Seifert, Patric; Wandinger, Ulla
    In a series of two articles, a novel, robust, and practicable lidar approach is presented that allows us to derive microphysical properties of liquid-water clouds (cloud extinction coefficient, droplet effective radius, liquid-water content, cloud droplet number concentration) at a height of 50–100 m above the cloud base. The temporal resolution of the observations is on the order of 30–120 s. Together with the aerosol information (aerosol extinction coefficients, cloud condensation nucleus concentration) below the cloud layer, obtained with the same lidar, in-depth aerosol–cloud interaction studies can be performed. The theoretical background and the methodology of the new cloud lidar technique is outlined in this article (Part 1), and measurement applications are presented in a companion publication (Part 2) (Jimenez et al., 2020a). The novel cloud retrieval technique is based on lidar observations of the volume linear depolarization ratio at two different receiver fields of view (FOVs). Extensive simulations of lidar returns in the multiple scattering regime were conducted to investigate the capabilities of a dual-FOV polarization lidar to measure cloud properties and to quantify the information content in the measured depolarization features regarding the basic retrieval parameters (cloud extinction coefficient, droplet effective radius). Key simulation results and the overall data analysis scheme developed to obtain the aerosol and cloud products are presented.
  • Item
    Wildfire smoke, Arctic haze, and aerosol effects on mixed-phase and cirrus clouds over the North Pole region during MOSAiC: an introduction
    (Katlenburg-Lindau : European Geosciences Union, 2021) Engelmann, Ronny; Ansmann, Albert; Ohneiser, Kevin; Griesche, Hannes; Radenz, Martin; Hofer, Julian; Althausen, Dietrich; Dahlke, Sandro; Maturilli, Marion; Veselovskii, Igor; Jimenez, Cristofer; Wiesen, Robert; Baars, Holger; Bühl, Johannes; Gebauer, Henriette; Haarig, Moritz; Seifert, Patric; Wandinger, Ulla; Macke, Andreas
    An advanced multiwavelength polarization Raman lidar was operated aboard the icebreaker Polarstern during the MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) expedition to continuously monitor aerosol and cloud layers in the central Arctic up to 30gkm height. The expedition lasted from September 2019 to October 2020 and measurements were mostly taken between 85 and 88.5ggN. The lidar was integrated into a complex remote-sensing infrastructure aboard the Polarstern. In this article, novel lidar techniques, innovative concepts to study aerosol-cloud interaction in the Arctic, and unique MOSAiC findings will be presented. The highlight of the lidar measurements was the detection of a 10gkm deep wildfire smoke layer over the North Pole region between 7-8gkm and 17-18gkm height with an aerosol optical thickness (AOT) at 532gnm of around 0.1 (in October-November 2019) and 0.05 from December to March. The dual-wavelength Raman lidar technique allowed us to unambiguously identify smoke as the dominating aerosol type in the aerosol layer in the upper troposphere and lower stratosphere (UTLS). An additional contribution to the 532gnm AOT by volcanic sulfate aerosol (Raikoke eruption) was estimated to always be lower than 15g%. The optical and microphysical properties of the UTLS smoke layer are presented in an accompanying paper . This smoke event offered the unique opportunity to study the influence of organic aerosol particles (serving as ice-nucleating particles, INPs) on cirrus formation in the upper troposphere. An example of a closure study is presented to explain our concept of investigating aerosol-cloud interaction in this field. The smoke particles were obviously able to control the evolution of the cirrus system and caused low ice crystal number concentration. After the discussion of two typical Arctic haze events, we present a case study of the evolution of a long-lasting mixed-phase cloud layer embedded in Arctic haze in the free troposphere. The recently introduced dual-field-of-view polarization lidar technique was applied, for the first time, to mixed-phase cloud observations in order to determine the microphysical properties of the water droplets. The mixed-phase cloud closure experiment (based on combined lidar and radar observations) indicated that the observed aerosol levels controlled the number concentrations of nucleated droplets and ice crystals.
  • Item
    Advection of Biomass Burning Aerosols towards the Southern Hemispheric Mid-Latitude Station of Punta Arenas as Observed with Multiwavelength Polarization Raman Lidar
    (Basel : MDPI AG, 2021) Floutsi, Athena Augusta; Baars, Holger; Radenz, Martin; Haarig, Moritz; Yin, Zhenping; Seifert, Patric; Jimenez, Cristofer; Ansmann, Albert; Engelmann, Ronny; Barja, Boris; Zamorano, Felix; Wandinger, Ulla
    In this paper, we present long-term observations of the multiwavelength Raman lidar PollyXT conducted in the framework of the DACAPO-PESO campaign. Regardless of the relatively clean atmosphere in the southern mid-latitude oceans region, we regularly observed events of long-range transported smoke, originating either from regional sources in South America or from Australia. Two case studies will be discussed, both identified as smoke events that occurred on 5 February 2019 and 11 March 2019. For the first case considered, the lofted smoke layer was located at an altitude between 1.0 and 4.2 km, and apart from the predominance of smoke particles, particle linear depolarization values indicated the presence of dust particles. Mean lidar ratio values at 355 and 532 nm were 49 ± 12 and 24 ± 18 sr respectively, while the mean particle linear depolarization was 7.6 ± 3.6% at 532 nm. The advection of smoke and dust particles above Punta Arenas affected significantly the available cloud condensation nuclei (CCN) and ice nucleating particles (INP) in the lower troposphere, and effectively triggered the ice crystal formation processes. Regarding the second case, the thin smoke layers were observed at altitudes 5.5–7.0, 9.0 and 11.0 km. The particle linear depolarization ratio at 532 nm increased rapidly with height, starting from 2% for the lowest two layers and increasing up to 9.5% for the highest layer, indicating the possible presence of non-spherical coated soot aggregates. INP activation was effectively facilitated. The long-term analysis of the one year of observations showed that tropospheric smoke advection over Punta Arenas occurred 16 times (lasting from 1 to 17 h), regularly distributed over the period and with high potential to influence cloud formation in the otherwise pristine environment of the region.