Search Results

Now showing 1 - 2 of 2
  • Item
    Analysis of exceedances in the daily PM10 mass concentration (50 μg m−3) at a roadside station in Leipzig, Germany
    (München : European Geopyhsical Union, 2012) Engler, C.; Birmili, W.; Spindler, G.; Wiedensohler, A.
    Five years of PM10 and PM2.5 ambient air measurements at a roadside, an urban, and a regional background site in Leipzig (Germany) were analyzed for violations of the legal PM10 limit value (EC, 1999). The annual mean PM10 concentrations at the three sites were well below the legal threshold of 40 μg m−3 (32.6, 22.0 and 21.7 μg m−3, respectively). At roadside, the daily maximum value of 50 μg m−3 was exceeded on 232 days (13% of all days) in 2005–2009, which led to a violation of the EC directive in three out of five years. We analysed the meteorological factors and local source contributions that eventually led to the exceedances of the daily limit value. As noted in other urban environments before, most exceedance days were observed in the cold season. Exceedance days were most probable under synoptic situations characterised by stagnant winds, low temperatures and strong temperature inversions in winter time. However, these extreme situations accounted for only less than half of the exeedance days. We also noticed a significant number of exceedance days that occurred in the cold season under south-westerly winds, and in the warm season in the presence of easterly winds. Our analysis suggests that local as well as regional sources of PM are equally responsible for exceedances days at the roadside site. The conclusion is that a combined effort of local, national and international reduction measures appears most likely to avoid systematic exceedances of the daily limit value in the future.
  • Item
    Seasonal variability of Saharan desert dust and ice nucleating particles over Europe
    (München : European Geopyhsical Union, 2015) Hande, L.B.; Engler, C.; Hoose, C.; Tegen, I.
    Dust aerosols are thought to be the main contributor to atmospheric ice nucleation. While there are case studies supporting this, a climatological sense of the importance of dust to atmospheric ice nucleating particle (INP) concentrations and its seasonal variability over Europe is lacking. Here, we use a mesoscale model to estimate Saharan dust concentrations over Europe in 2008. There are large differences in median dust concentrations between seasons, with the highest concentrations and highest variability in the lower to mid-troposphere. Laboratory-based ice nucleation parameterisations are applied to these simulated dust number concentrations to calculate the potential INP resulting from immersion freezing and deposition nucleation on these dust particles. The potential INP concentrations increase exponentially with height due to decreasing temperatures in the lower and mid-troposphere. When the ice-activated fraction increases sufficiently, INP concentrations follow the dust particle concentrations. The potential INP profiles exhibit similarly large differences between seasons, with the highest concentrations in spring (median potential immersion INP concentrations nearly 105 m−3, median potential deposition INP concentrations at 120% relative humidity with respect to ice over 105 m−3), about an order of magnitude larger than those in summer. Using these results, a best-fit function is provided to estimate the potential INPs for use in limited-area models, which is representative of the normal background INP concentrations over Europe. A statistical evaluation of the results against field and laboratory measurements indicates that the INP concentrations are in close agreement with observations.