Search Results

Now showing 1 - 6 of 6
  • Item
    The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview
    (Amsterdam : Elsevier, 2016) Riahi, Keywan; van Vuuren, Detlef P.; Kriegler, Elmar; Edmonds, Jae; O’Neill, Brian C.; Fujimori, Shinichiro; Bauer, Nico; Calvin, Katherine; Dellink, Rob; Fricko, Oliver; Lutz, Wolfgang; Popp, Alexander; Crespo Cuaresma, Jesus; KC, Samir; Leimbach, Marian; Jiang, Leiwen; Kram, Tom; Rao, Shilpa; Emmerling, Johannes; Ebi, Kristie; Hasegawa, Tomoko; Havlik, Petr; Humpenöder, Florian; Aleluia Da Silva, Lara; Smith, Steve; Stehfest, Elke; Bosetti, Valentina; Eom, Jiyong; Gernaat, David; Masui, Toshihiko; Rogelj, Joeri; Strefler, Jessica; Drouet, Laurent; Krey, Volker; Luderer, Gunnar; Harmsen, Mathijs; Takahashi, Kiyoshi; Baumstark, Lavinia; Doelman, Jonathan C.; Kainuma, Mikiko; Klimont, Zbigniew; Marangoni, Giacomo; Lotze-Campen, Hermann; Obersteiner, Michael; Tabeau, Andrzej; Tavoni, Massimo
    This paper presents the overview of the Shared Socioeconomic Pathways (SSPs) and their energy, land use, and emissions implications. The SSPs are part of a new scenario framework, established by the climate change research community in order to facilitate the integrated analysis of future climate impacts, vulnerabilities, adaptation, and mitigation. The pathways were developed over the last years as a joint community effort and describe plausible major global developments that together would lead in the future to different challenges for mitigation and adaptation to climate change. The SSPs are based on five narratives describing alternative socio-economic developments, including sustainable development, regional rivalry, inequality, fossil-fueled development, and middle-of-the-road development. The long-term demographic and economic projections of the SSPs depict a wide uncertainty range consistent with the scenario literature. A multi-model approach was used for the elaboration of the energy, land-use and the emissions trajectories of SSP-based scenarios. The baseline scenarios lead to global energy consumption of 400–1200 EJ in 2100, and feature vastly different land-use dynamics, ranging from a possible reduction in cropland area up to a massive expansion by more than 700 million hectares by 2100. The associated annual CO2 emissions of the baseline scenarios range from about 25 GtCO2 to more than 120 GtCO2 per year by 2100. With respect to mitigation, we find that associated costs strongly depend on three factors: (1) the policy assumptions, (2) the socio-economic narrative, and (3) the stringency of the target. The carbon price for reaching the target of 2.6 W/m2 that is consistent with a temperature change limit of 2 °C, differs in our analysis thus by about a factor of three across the SSP marker scenarios. Moreover, many models could not reach this target from the SSPs with high mitigation challenges. While the SSPs were designed to represent different mitigation and adaptation challenges, the resulting narratives and quantifications span a wide range of different futures broadly representative of the current literature. This allows their subsequent use and development in new assessments and research projects. Critical next steps for the community scenario process will, among others, involve regional and sectoral extensions, further elaboration of the adaptation and impacts dimension, as well as employing the SSP scenarios with the new generation of earth system models as part of the 6th climate model intercomparison project (CMIP6).
  • Item
    Carbon lock-in through capital stock inertia associated with weak near-term climate policies
    (Amsterdam [u.a.] : Elsevier Science, 2013) Bertram, Christoph; Johnson, Nils; Luderer, Gunnar; Riahi, Keywan; Isaac, Morna; Eom, Jiyong
    Stringent long-term climate targets necessitate a limit on cumulative emissions in this century for which sufficient policy signals are lacking. Using nine energy-economy models, we explore how policies pursued during the next two decades impact long-term transformation pathways towards stringent long-term climate targets. Less stringent near-term policies (i.e., those with larger emissions) consume more of the long-term cumulative emissions budget in the 2010–2030 period, which increases the likelihood of overshooting the budget and the urgency of reducing GHG emissions after 2030. Furthermore, the larger near-term GHG emissions associated with less stringent policies are generated primarily by additional coal-based electricity generation. Therefore, to be successful in meeting the long-term target despite near-term emissions reductions that are weaker than those implied by cost-optimal mitigation pathways, models must prematurely retire significant coal capacity while rapidly ramping up low-carbon technologies between 2030 and 2050 and remove large quantities of CO2 from the atmosphere in the latter half of the century. While increased energy efficiency lowers mitigation costs considerably, even with weak near-term policies, it does not substantially reduce the short-term reliance on coal electricity. However, increased energy efficiency does allow the energy system more flexibility in mitigating emissions and, thus, facilitates the post-2030 transition.
  • Item
    Diagnostic indicators for integrated assessment models of climate policy
    (Amsterdam [u.a.] : Elsevier Science, 2014) Kriegler, Elmar; Petermann, Nils; Krey, Volker; Schwanitz, Valeria Jana; Luderer, Gunnar; Ashina, Shuichi; Bosetti, Valentina; Eom, Jiyong; Kitous, Alban; Méjean, Aurélie; Paroussos, Leonidas; Sano, Fuminori; Turton, Hal; Wilson, Charlie; Van Vuuren, Detlef P.
    Integrated assessments of how climate policy interacts with energy-economy systems can be performed by a variety of models with different functional structures. In order to provide insights into why results differ between models, this article proposes a diagnostic scheme that can be applied to a wide range of models. Diagnostics can uncover patterns of model behavior and indicate how results differ between model types. Such insights are informative since model behavior can have a significant impact on projections of climate change mitigation costs and other policy-relevant information. The authors propose diagnostic indicators to characterize model responses to carbon price signals and test these in a diagnostic study of 11 global models. Indicators describe the magnitude of emission abatement and the associated costs relative to a harmonized baseline, the relative changes in carbon intensity and energy intensity, and the extent of transformation in the energy system. This study shows a correlation among indicators suggesting that models can be classified into groups based on common patterns of behavior in response to carbon pricing. Such a classification can help to explain variations among policy-relevant model results.
  • Item
    Making or breaking climate targets: The AMPERE study on staged accession scenarios for climate policy
    (Amsterdam [u.a.] : Elsevier Science, 2014) Kriegler, Elmar; Riahi, Keywan; Bauer, Nico; Schwanitz, Valeria Jana; Petermann, Nils; Bosetti, Valentina; Marcucci, Adriana; Otto, Sander; Paroussos, Leonidas; Rao, Shilpa; Currás, Tabaré Arroyo; Ashina, Shuichi; Bollen, Johannes; Eom, Jiyong; Hamdi-Cherif, Meriem; Longden, Thomas; Kitous, Alban; Méjean, Aurélie; Sano, Fuminori; Schaeffer, Michiel; Wada, Kenichi; Capros, Pantelis; van Vuuren, Detlef P.; Edenhofer, Ottmar
    This study explores a situation of staged accession to a global climate policy regime from the current situation of regionally fragmented and moderate climate action. The analysis is based on scenarios in which a front runner coalition – the EU or the EU and China – embarks on immediate ambitious climate action while the rest of the world makes a transition to a global climate regime between 2030 and 2050. We assume that the ensuing regime involves strong mitigation efforts but does not require late joiners to compensate for their initially higher emissions. Thus, climate targets are relaxed, and although staged accession can achieve significant reductions of global warming, the resulting climate outcome is unlikely to be consistent with the goal of limiting global warming to 2 degrees. The addition of China to the front runner coalition can reduce pre-2050 excess emissions by 20–30%, increasing the likelihood of staying below 2 degrees. Not accounting for potential co-benefits, the cost of front runner action is found to be lower for the EU than for China. Regions that delay their accession to the climate regime face a trade-off between reduced short term costs and higher transitional requirements due to larger carbon lock-ins and more rapidly increasing carbon prices during the accession period.
  • Item
    Locked into Copenhagen pledges - Implications of short-term emission targets for the cost and feasibility of long-term climate goals
    (Amsterdam [u.a.] : Elsevier Science, 2013) Riahi, Keywan; Kriegler, Elmar; Johnson, Nils; Bertram, Christoph; den Elzen, Michel; Eom, Jiyong; Schaeffer, Michiel; Edmonds, Jae; Isaac, Morna; Krey, Volker; Longden, Thomas; Luderer, Gunnar; Méjean, Aurélie; McCollum, David L.; Mima, Silvana; Turton, Hal; van Vuuren, Detlef P.; Wada, Kenichi; Bosetti, Valentina; Capros, Pantelis; Criqui, Patrick; Hamdi-Cherif, Meriem; Kainuma, Mikiko; Edenhofer, Ottmar
    This paper provides an overview of the AMPERE modeling comparison project with focus on the implications of near-term policies for the costs and attainability of long-term climate objectives. Nine modeling teams participated in the project to explore the consequences of global emissions following the proposed policy stringency of the national pledges from the Copenhagen Accord and Cancún Agreements to 2030. Specific features compared to earlier assessments are the explicit consideration of near-term 2030 emission targets as well as the systematic sensitivity analysis for the availability and potential of mitigation technologies. Our estimates show that a 2030 mitigation effort comparable to the pledges would result in a further “lock-in” of the energy system into fossil fuels and thus impede the required energy transformation to reach low greenhouse-gas stabilization levels (450 ppm CO2e). Major implications include significant increases in mitigation costs, increased risk that low stabilization targets become unattainable, and reduced chances of staying below the proposed temperature change target of 2 °C in case of overshoot. With respect to technologies, we find that following the pledge pathways to 2030 would narrow policy choices, and increases the risks that some currently optional technologies, such as carbon capture and storage (CCS) or the large-scale deployment of bioenergy, will become “a must” by 2030.
  • Item
    The impact of near-term climate policy choices on technology and emission transition pathways
    (Amsterdam [u.a.] : Elsevier Science, 2013) Eom, Jiyong; Edmonds, Jae; Krey, Volker; Johnson, Nils; Longden, Thomas; Luderer, Gunnar; Riahi, Keywan; Van Vuuren, Detlef P.
    This paper explores the implications of delays (to 2030) in implementing optimal policies for long-term transition pathways to limit climate forcing to 450 ppm CO2e on the basis of the AMPERE Work Package 2 model comparison study. The paper highlights the critical importance of the period 2030–2050 for ambitious mitigation strategies. In this period, the most rapid shift to low greenhouse gas emitting technology occurs. In the delayed response emission mitigation scenarios, an even faster transition rate in this period is required to compensate for the additional emissions before 2030. Our physical deployment measures indicate that the availability of CCS technology could play a critical role in facilitating the attainment of ambitious mitigation goals. Without CCS, deployment of other mitigation technologies would become extremely high in the 2030–2050 period. Yet the presence of CCS greatly alleviates the challenges to the transition particularly after the delayed climate policies, lowering the risk that the long-term goal becomes unattainable. The results also highlight the important role of bioenergy with CO2 capture and storage (BECCS), which facilitates energy production with negative carbon emissions. If BECCS is available, transition pathways exceed the emission budget in the mid-term, removing the excess with BECCS in the long term. Excluding either BE or CCS from the technology portfolio implies that emission reductions need to take place much earlier.