Search Results

Now showing 1 - 2 of 2
  • Item
    Spatial distribution and optical properties of Saharan dust observed by airborne high spectral resolution lidar during SAMUM 2006
    (Milton Park : Taylor & Francis, 2017) Esselborn, Michael; Wirth, Martin; Fix, Andreas; Weinzierl, Bernadett; Rasp, Katharina; Tesche, Matthias; Petzold, Andreas
    Airborne measurements of pure Saharan dust extinction and backscatter coefficients, the corresponding lidar ratio and the aerosol optical thickness (AOT) have been performed during the Saharan Mineral Dust Experiment 2006, with a high spectral resolution lidar. Dust layers were found to range from ground up to 4–6 km above sea level (asl). Maximum AOT values at 532 nm, encountered within these layers during the DLR Falcon research flights were 0.50–0.55. A significant horizontal variability of the AOT south of the High Atlas mountain range was observed even in cases of a well-mixed dust layer. High vertical variations of the dust lidar ratio of 38–50 sr were observed in cases of stratified dust layers. The variability of the lidar ratio was attributed to dust advection from different source regions. The aerosol depolarization ratio was about 30% at 532 nm during all measurements and showed only marginal vertical variations.
  • Item
    Microphysical and optical properties of dust and tropical biomass burning aerosol layers in the Cape Verde region - an overview of the airborne in situ and lidar measurements during SAMUM-2
    (Milton Park : Taylor & Francis, 2017) Weinzierl, Bernadett; Sauer, Daniel; Esselborn, Michael; Petzold, Andreas; Veira, Andreas; Rose, Maximilian; Mund, Susanne; Wirth, Martin; Ansmann, Albert; Tesche, Matthias; Gross, Silke; Freudenthaler, Volker
    In the framework of the Saharan Mineral Dust Experiment (SAMUM) airborne High Spectral Resolution Lidar and in situ measurements of the particle size, aerosol mixing state and absorption coefficient were conducted. Here, the properties of mineral dust and tropical biomass burning layers in the Cape Verde region in January/February 2008 are investigated and compared with the properties of fresh dust observed in May/June 2006 close the Sahara. In the Cape Verde area, we found a complex stratification with dust layers covering the altitude range below 2 km and biomass burning layers aloft. The aerosol type of the individual layers was classified based on depolarization and lidar ratios and, in addition, on in situ measured Ångström exponents of absorption åap. The dust layers had a depth of 1.3 ± 0.4 km and showed a median åap of 3.95. The median effective diameter Deff was 2.5 μm and the dust layers over Cape Verde yielded clear signals of aging: large particles were depleted due to gravitational settling and the accumulation mode diameter was shifted towards larger sizes as a result of coagulation. The tropical biomass layers had a depth of 2.0 ± 1.1 km and were characterized by a median åap of 1.34. They always contained a certain amount of large dust particles and showed a median Deff of 1.1 μm and a fine mode Deff,fine of 0.33. The dust and biomass burning layers had a median aerosol optical depth (AOD) of 0.23 and 0.09, respectively. The median contributions to the AOD of the total atmospheric column below 10 km were 75 and 37%, respectively.