Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Uncertainty in the measurement of indoor temperature and humidity in naturally ventilated dairy buildings as influenced by measurement technique and data variability

2017, Hempel, Sabrina, König, Marcel, Menz, Christoph, Janke, David, Amon, Barbara, Banhazi, Thomas M., Estellés, Fernando, Amon, Thomas

The microclimatic conditions in dairy buildings affect animal welfare and gaseous emissions. Measurements are highly variable due to the inhomogeneous distribution of heat and humidity sources (related to farm management) and the turbulent inflow (associated with meteorologic boundary conditions). The selection of the measurement strategy (number and position of the sensors) and the analysis methodology adds to the uncertainty of the applied measurement technique. To assess the suitability of different sensor positions, in situations where monitoring in the direct vicinity of the animals is not possible, we collected long-term data in two naturally ventilated dairy barns in Germany between March 2015 and April 2016 (horizontal and vertical profiles with 10 to 5 min temporal resolution). Uncertainties related to the measurement setup were assessed by comparing the device outputs under lab conditions after the on-farm experiments. We found out that the uncertainty in measurements of relative humidity is of particular importance when assessing heat stress risk and resulting economic losses in terms of temperature-humidity index. Measurements at a height of approximately 3 m–3.5 m turned out to be a good approximation for the microclimatic conditions in the animal occupied zone (including the air volume close to the emission active zone). However, further investigation along this cross-section is required to reduce uncertainties related to the inhomogeneous distribution of humidity. In addition, a regular sound cleaning (and if possible recalibration after few months) of the measurement devices is crucial to reduce the instrumentation uncertainty in long-term monitoring of relative humidity in dairy barns. © 2017 The Authors

Loading...
Thumbnail Image
Item

Heat stress risk in European dairy cattle husbandry under different climate change scenarios – uncertainties and potential impacts

2019, Hempel, Sabrina, Menz, Christoph, Pinto, Severino, Galán, Elena, Janke, David, Estellés, Fernando, Müschner-Siemens, Theresa, Wang, Xiaoshuai, Heinicke, Julia, Zhang, Guoqiang, Amon, Barbara, del Prado, Agustín, Amon, Thomas

In the last decades, a global warming trend was observed. Along with the temperature increase, modifications in the humidity and wind regime amplify the regional and local impacts on livestock husbandry. Direct impacts include the occurrence of climatic stress conditions. In Europe, cows are economically highly relevant and are mainly kept in naturally ventilated buildings that are most susceptible to climate change. The high-yielding cows are particularly vulnerable to heat stress. Modifications in housing management are the main measures taken to improve the ability of livestock to cope with these conditions. Measures are typically taken in direct reaction to uncomfortable conditions instead of in anticipation of a long-term risk for climatic stress. Measures that balance welfare, environmental and economic issues are barely investigated in the context of climate change and are thus almost not available for commercial farms. Quantitative analysis of the climate change impacts on animal welfare and linked economic and environmental factors is rare. Therefore, we used a numerical modeling approach to estimate the future heat stress risk in such dairy cattle husbandry systems. The indoor climate was monitored inside three reference barns in central Europe and the Mediterranean regions. An artificial neuronal network (ANN) was trained to relate the outdoor weather conditions provided by official meteorological weather stations to the measured indoor microclimate. Subsequently, this ANN model was driven by an ensemble of regional climate model projections with three different greenhouse gas concentration scenarios. For the evaluation of the heat stress risk, we considered the number and duration of heat stress events. Based on the changes in the heat stress events, various economic and environmental impacts were estimated. The impacts of the projected increase in heat stress risk varied among the barns due to different locations and designs as well as the anticipated climate change (considering different climate models and future greenhouse gas concentrations). There was an overall increasing trend in number and duration of heat stress events. At the end of the century, the number of annual stress events can be expected to increase by up to 2000, while the average duration of the events increases by up to 22 h compared to the end of the last century. This implies strong impacts on economics, environment and animal welfare and an urgent need for mid-term adaptation strategies. We anticipated that up to one-tenth of all hours of a year, correspondingly one-third of all days, will be classified as critical heat stress conditions. Due to heat stress, milk yield may decrease by about 2.8 % relative to the present European milk yield, and farmers may expect financial losses in the summer season of about 5.4 % of their monthly income. In addition, an increasing demand for emission reduction measures must be expected, as an emission increase of about 16 Gg of ammonia and 0.1 Gg of methane per year can be expected under the anticipated heat stress conditions. The cattle respiration rate increases by up to 60 %, and the standing time may be prolonged by 1 h. This causes health issues and increases the probability of medical treatments. The various impacts imply feedback loops in the climate system which are presently underexplored. Hence, future in-depth studies on the different impacts and adaptation options at different stress levels are highly recommended.

Loading...
Thumbnail Image
Item

Evaluating Three-Pillar Sustainability Modelling Approaches for Dairy Cattle Production Systems

2021, Díaz de Otálora, Xabier, del Prado, Agustín, Dragoni, Federico, Estellés, Fernando, Amon, Barbara

Milk production in Europe is facing major challenges to ensure its economic, environmental, and social sustainability. It is essential that holistic concepts are developed to ensure the future sustainability of the sector and to assist farmers and stakeholders in making knowledge-based decisions. In this study, integrated sustainability assessment by means of whole-farm modelling is presented as a valuable approach for identifying factors and mechanisms that could be used to improve the three pillars (3Ps) of sustainability in the context of an increasing awareness of economic profitability, social well-being, and environmental impacts of dairy production systems (DPS). This work aims (i) to create an evaluation framework that enables quantitative analysis of the level of integration of 3P sustainability indicators in whole-farm models and (ii) to test this method. Therefore, an evaluation framework consisting of 35 indicators distributed across the 3Ps of sustainability was used to evaluate three whole-farm models. Overall, the models integrated at least 40% of the proposed indicators. Different results were obtained for each sustainability pillar by each evaluated model. Higher scores were obtained for the environmental pillar, followed by the economic and the social pillars. In conclusion, this evaluation framework was found to be an effective tool that allows potential users to choose among whole-farm models depending on their needs. Pathways for further model development that may be used to integrate the 3P sustainability assessment of DPS in a more complete and detailed way were identified.