Search Results

Now showing 1 - 10 of 25
  • Item
    A Fair and Comprehensive Comparison of Multimodal Tweet Sentiment Analysis Methods
    (Ithaka : Cornell University, 2021) Cheema, Gullal S.; Hakimov, Sherzod; Müller-Budack, Eric; Ewerth, Ralph
    Opinion and sentiment analysis is a vital task to characterize subjective information in social media posts. In this paper, we present a comprehensive experimental evaluation and comparison with six state-of-the-art methods, from which we have re-implemented one of them. In addition, we investigate different textual and visual feature embeddings that cover different aspects of the content, as well as the recently introduced multimodal CLIP embeddings. Experimental results are presented for two different publicly available benchmark datasets of tweets and corresponding images. In contrast to the evaluation methodology of previous work, we introduce a reproducible and fair evaluation scheme to make results comparable. Finally, we conduct an error analysis to outline the limitations of the methods and possibilities for the future work.
  • Item
    Understanding image-text relations and news values for multimodal news analysis
    (Lausanne : Frontiers Media, 2023) Cheema, Gullal S.; Hakimov, Sherzod; Müller-Budack, Eric; Otto, Christian; Bateman, John A.; Ewerth, Ralph
    The analysis of news dissemination is of utmost importance since the credibility of information and the identification of disinformation and misinformation affect society as a whole. Given the large amounts of news data published daily on the Web, the empirical analysis of news with regard to research questions and the detection of problematic news content on the Web require computational methods that work at scale. Today's online news are typically disseminated in a multimodal form, including various presentation modalities such as text, image, audio, and video. Recent developments in multimodal machine learning now make it possible to capture basic “descriptive” relations between modalities–such as correspondences between words and phrases, on the one hand, and corresponding visual depictions of the verbally expressed information on the other. Although such advances have enabled tremendous progress in tasks like image captioning, text-to-image generation and visual question answering, in domains such as news dissemination, there is a need to go further. In this paper, we introduce a novel framework for the computational analysis of multimodal news. We motivate a set of more complex image-text relations as well as multimodal news values based on real examples of news reports and consider their realization by computational approaches. To this end, we provide (a) an overview of existing literature from semiotics where detailed proposals have been made for taxonomies covering diverse image-text relations generalisable to any domain; (b) an overview of computational work that derives models of image-text relations from data; and (c) an overview of a particular class of news-centric attributes developed in journalism studies called news values. The result is a novel framework for multimodal news analysis that closes existing gaps in previous work while maintaining and combining the strengths of those accounts. We assess and discuss the elements of the framework with real-world examples and use cases, setting out research directions at the intersection of multimodal learning, multimodal analytics and computational social sciences that can benefit from our approach.
  • Item
    Multimodal news analytics using measures of cross-modal entity and context consistency
    (London : Springer, 2021) Müller-Budack, Eric; Theiner, Jonas; Diering, Sebastian; Idahl, Maximilian; Hakimov, Sherzod; Ewerth, Ralph
    The World Wide Web has become a popular source to gather information and news. Multimodal information, e.g., supplement text with photographs, is typically used to convey the news more effectively or to attract attention. The photographs can be decorative, depict additional details, but might also contain misleading information. The quantification of the cross-modal consistency of entity representations can assist human assessors’ evaluation of the overall multimodal message. In some cases such measures might give hints to detect fake news, which is an increasingly important topic in today’s society. In this paper, we present a multimodal approach to quantify the entity coherence between image and text in real-world news. Named entity linking is applied to extract persons, locations, and events from news texts. Several measures are suggested to calculate the cross-modal similarity of the entities in text and photograph by exploiting state-of-the-art computer vision approaches. In contrast to previous work, our system automatically acquires example data from the Web and is applicable to real-world news. Moreover, an approach that quantifies contextual image-text relations is introduced. The feasibility is demonstrated on two datasets that cover different languages, topics, and domains.
  • Item
    Estimating the information gap between textual and visual representations
    (New York City : Association for Computing Machinery, 2017) Henning, Christian; Ewerth, Ralph
    Photos, drawings, figures, etc. supplement textual information in various kinds of media, for example, in web news or scientific pub- lications. In this respect, the intended effect of an image can be quite different, e.g., providing additional information, focusing on certain details of surrounding text, or simply being a general il- lustration of a topic. As a consequence, the semantic correlation between information of different modalities can vary noticeably, too. Moreover, cross-modal interrelations are often hard to describe in a precise way. The variety of possible interrelations of textual and graphical information and the question, how they can be de- scribed and automatically estimated have not been addressed yet by previous work. In this paper, we present several contributions to close this gap. First, we introduce two measures to describe cross- modal interrelations: cross-modal mutual information (CMI) and semantic correlation (SC). Second, a novel approach relying on deep learning is suggested to estimate CMI and SC of textual and visual information. Third, three diverse datasets are leveraged to learn an appropriate deep neural network model for the demanding task. The system has been evaluated on a challenging test set and the experimental results demonstrate the feasibility of the approach.
  • Item
    Check square at CheckThat! 2020: Claim Detection in Social Media via Fusion of Transformer and Syntactic Features
    (Aachen, Germany : RWTH Aachen, 2020) Cheema, Gullasl S.; Hakimov, Sherzod; Ewerth, Ralph; Cappellato, Linda; Eickhoff, Carsten; Ferro, Nicola; Névéol, Aurélie
    In this digital age of news consumption, a news reader has the ability to react, express and share opinions with others in a highly interactive and fast manner. As a consequence, fake news has made its way into our daily life because of very limited capacity to verify news on the Internet by large companies as well as individuals. In this paper, we focus on solving two problems which are part of the fact-checking ecosystem that can help to automate fact-checking of claims in an ever increasing stream of content on social media. For the first prob-lem, claim check-worthiness prediction, we explore the fusion of syntac-tic features and deep transformer Bidirectional Encoder Representations from Transformers (BERT) embeddings, to classify check-worthiness of a tweet, i.e. whether it includes a claim or not. We conduct a detailed feature analysis and present our best performing models for English and Arabic tweets. For the second problem, claim retrieval, we explore the pre-trained embeddings from a Siamese network transformer model (sentence-transformers) specifically trained for semantic textual similar-ity, and perform KD-search to retrieve verified claims with respect to a query tweet.
  • Item
    Combining Textual Features for the Detection of Hateful and Offensive Language
    (Aachen, Germany : RWTH Aachen, 2021) Hakimov, Sherzod; Ewerth, Ralph; Mehta, Parth; Mandl, Thomas; Majumder, Prasenjit; Mitra, Mandar
    The detection of offensive, hateful and profane language has become a critical challenge since many users in social networks are exposed to cyberbullying activities on a daily basis. In this paper, we present an analysis of combining different textual features for the detection of hateful or offensive posts on Twitter. We provide a detailed experimental evaluation to understand the impact of each building block in a neural network architecture. The proposed architecture is evaluated on the English Subtask 1A: Identifying Hate, offensive and profane content from the post datasets of HASOC-2021 dataset under the team name TIB-VA. We compared different variants of the contextual word embeddings combined with the character level embeddings and the encoding of collected hate terms.
  • Item
    On the Impact of Features and Classifiers for Measuring Knowledge Gain during Web Search - A Case Study
    (Aachen, Germany : RWTH Aachen, 2021) Gritz, Wolfgang; Hoppe, Anett; Ewerth, Ralph; Cong, Gao; Ramanath, Maya
    Search engines are normally not designed to support human learning intents and processes. The ÿeld of Search as Learning (SAL) aims to investigate the characteristics of a successful Web search with a learning purpose. In this paper, we analyze the impact of text complexity of Web pages on predicting knowledge gain during a search session. For this purpose, we conduct an experimental case study and investigate the in˝uence of several text-based features and classiÿers on the prediction task. We build upon data from a study of related work, where 104 participants were given the task to learn about the formation of lightning and thunder through Web search. We perform an extensive evaluation based on a state-of-the-art approach and extend it with additional features related to textual complexity of Web pages. In contrast to prior work, we perform a systematic search for optimal hyperparameters and show the possible in˝uence of feature selection strategies on the knowledge gain prediction. When using the new set of features, state-of-the-art results are noticeably improved. The results indicate that text complexity of Web pages could be an important feature resource for knowledge gain prediction.
  • Item
    On the Role of Images for Analyzing Claims in Social Media
    (Aachen, Germany : RWTH Aachen, 2021) Cheema, Gullal S.; Hakimov, Sherzod; Müller-Budack, Eric; Ewerth, Ralph
    Fake news is a severe problem in social media. In this paper, we present an empirical study on visual, textual, and multimodal models for the tasks of claim, claim check-worthiness, and conspiracy detection, all of which are related to fake news detection. Recent work suggests that images are more influential than text and often appear alongside fake text. To this end, several multimodal models have been proposed in recent years that use images along with text to detect fake news on social media sites like Twitter. However, the role of images is not well understood for claim detection, specifically using transformer-based textual and multimodal models. We investigate state-of-the-art models for images, text (Transformer-based), and multimodal information for four different datasets across two languages to understand the role of images in the task of claim and conspiracy detection.
  • Item
    Towards an Open Research Knowledge Graph
    (Zenodo, 2018) Auer, Sören; Blümel, Ina; Ewerth, Ralph; Garatzogianni, Alexandra; Heller,, Lambert; Hoppe, Anett; Kasprzik, Anna; Koepler, Oliver; Nejdl, Wolfgang; Plank, Margret; Sens, Irina; Stocker, Markus; Tullney, Marco; Vidal, Maria-Esther; van Wezenbeek, Wilma
    The document-oriented workflows in science have reached (or already exceeded) the limits of adequacy as highlighted for example by recent discussions on the increasing proliferation of scientific literature and the reproducibility crisis. Despite an improved and digital access to scientific publications in the last decades, the exchange of scholarly knowledge continues to be primarily document-based: Researchers produce essays and articles that are made available in online and offline publication media as roughly granular text documents. With current developments in areas such as knowledge representation, semantic search, human-machine interaction, natural language processing, and artificial intelligence, it is possible to completely rethink this dominant paradigm of document-centered knowledge exchange and transform it into knowledge-based information flows by representing and expressing knowledge through semantically rich, interlinked knowledge graphs. The core of the establishment of knowledge-based information flows is the distributed, decentralized, collaborative creation and evolution of information models, vocabularies, ontologies, and knowledge graphs for the establishment of a common understanding of data and information between the various stakeholders as well as the integration of these technologies into the infrastructure and processes of search and knowledge exchange in the research library of the future. By integrating these information models into existing and new research infrastructure services, the information structures that are currently still implicit and deeply hidden in documents can be made explicit and directly usable. This revolutionizes scientific work because information and research results can be seamlessly interlinked with each other and better mapped to complex information needs. As a result, scientific work becomes more effective and efficient, since results become directly comparable and easier to reuse. In order to realize the vision of knowledge-based information flows in scholarly communication, comprehensive long-term technological infrastructure development and accompanying research are required. To secure information sovereignty, it is also of paramount importance to science – and urgency to science policymakers – that scientific infrastructures establish an open counterweight to emerging commercial developments in this area. The aim of this position paper is to facilitate the discussion on requirements, design decisions and a minimum viable product for an Open Research Knowledge Graph infrastructure. TIB aims to start developing this infrastructure in an open collaboration with interested partner organizations and individuals.