Search Results

Now showing 1 - 2 of 2
  • Item
    Anodically fabricated TiO2–SnO2 nanotubes and their application in lithium ion batteries
    (Cambridge : Royal Society of Chemistry, 2016) Madian, M.; Klose, M.; Jaumann, T.; Gebert, A.; Oswald, S.; Ismail, N.; Eychmüller, A.; Eckerta, J.; Giebeler, L.
    Developing novel electrode materials is a substantial issue to improve the performance of lithium ion batteries. In the present study, single phase Ti–Sn alloys with different Sn contents of 1 to 10 at% were used to fabricate Ti–Sn–O nanotubes via a straight-forward anodic oxidation step in an ethylene glycolbased solution containing NH4F. Various characterization tools such as SEM, EDXS, TEM, XPS and Raman spectroscopy were used to characterize the grown nanotube films. Our results reveal the successful formation of mixed TiO2/SnO2 nanotubes in the applied voltage range of 10–40 V. The as-formed nanotubes are amorphous and their dimensions are precisely controlled by tuning the formation voltage which turns Ti–Sn–O nanotubes into highly attractive materials for various applications. As an example, the Ti–Sn–O nanotubes offer promising properties as anode materials in lithium ion batteries. The electrochemical performance of the grown nanotubes was evaluated against a Li/Li+ electrode at a current density of 504 mA cm2. The results demonstrate that TiO2/SnO2 nanotubes prepared at 40 V on a TiSn1 alloy substrate display an average 1.4 fold increase in areal capacity with excellent cycling stability over more than 400 cycles compared to the pure TiO2 nanotubes fabricated and tested under identical conditions. This electrode was tested at current densities of 50, 100, 252, 504 and 1008 mA cm2 exhibiting average capacities of 780, 660, 490, and 405 mA cm2 (i.e. 410, 345, 305 and 212 mA h g1), respectively. The remarkably improved electrochemical performance is attributed to enhanced lithium ion diffusion which originates from the presence of SnO2 nanotubes and the high surface area of the mixed oxide tubes. The TiO2/SnO2 electrodes retain their original tubular structure after electrochemical cycling with only slight changes in their morphology.
  • Item
    Recovery of release cloud from laser shock-loaded graphite and hydrocarbon targets: in search of diamonds
    (Bristol : IOP Publ., 2022) Schuster, A.K.; Voigt, K.; Klemmed, B.; Hartley, N.J.; Lütgert, J.; Zhang, M.; Bähtz, C.; Benad, A.; Brabetz, C.; Cowan, T.; Döppner, T.; Erb, D.J.; Eychmüller, A.; Facsko, S.; Falcone, R.W.; Fletcher, L.B.; Frydrych, S.; Ganzenmüller, G.C.; Gericke, D.O.; Glenzer, S.H.; Grenzer, J.; Helbig, U.; Hiermaier, S.; Hübner, R.; Laso Garcia, A.; Lee, H.J.; MacDonald, M.J.; McBride, E.E.; Neumayer, P.; Pak, A.; Pelka, A.; Prencipe, I.; Prosvetov, A.; Rack, A.; Ravasio, A.; Redmer, R.; Reemts, D.; Rödel, M.; Schoelmerich, M.; Schumacher, D.; Tomut, M.; Turner, S.J.; Saunders, A.M.; Sun, P.; Vorberger, J.; Zettl, A.; Kraus, D.
    This work presents first insights into the dynamics of free-surface release clouds from dynamically compressed polystyrene and pyrolytic graphite at pressures up to 200 GPa, where they transform into diamond or lonsdaleite, respectively. These ejecta clouds are released into either vacuum or various types of catcher systems, and are monitored with high-speed recordings (frame rates up to 10 MHz). Molecular dynamics simulations are used to give insights to the rate of diamond preservation throughout the free expansion and the catcher impact process, highlighting the challenges of diamond retrieval. Raman spectroscopy data show graphitic signatures on a catcher plate confirming that the shock-compressed PS is transformed. First electron microscopy analyses of solid catcher plates yield an outstanding number of different spherical-like objects in the size range between ten(s) up to hundreds of nanometres, which are one type of two potential diamond candidates identified. The origin of some objects can unambiguously be assigned, while the history of others remains speculative.