Search Results

Now showing 1 - 2 of 2
  • Item
    Increasing the Diversity and Understanding of Semiconductor Nanoplatelets by Colloidal Atomic Layer Deposition
    (Weinheim : Wiley-VCH, 2020) Reichhelm, Annett; Hübner, René; Damm, Christine; Nielsch, Kornelius; Eychmüller, Alexander
    Nanoplatelets (NPLs) are a remarkable class of quantum confined materials with size-dependent optical properties, which are determined by the defined thickness of the crystalline platelets. To increase the variety of species, the colloidal atomic layer deposition method is used for the preparation of increasingly thicker CdSe NPLs. By growing further crystalline layers onto the surfaces of 4 and 5 monolayers (MLs) thick NPLs, species from 6 to 13 MLs are achieved. While increasing the thickness, the heavy-hole absorption peak shifts from 513 to 652 nm, leading to a variety of NPLs for applications and further investigations. The thickness and number of MLs of the platelet species are determined by high-resolution transmission electron microscopy (HRTEM) measurements, allowing the interpretation of several contradictions present in the NPL literature. In recent years, different assumptions are published, leading to a lack of clarity in the fundamentals of this field. Regarding the ongoing scientific interest in NPLs, there is a certain need for clarification, which is provided in this study. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Heterostructured Bismuth Telluride Selenide Nanosheets for Enhanced Thermoelectric Performance
    (Weinheim : Wiley-VCH GmbH, 2020) Bauer, Christoph; Veremchuk, Igor; Kunze, Christof; Benad, Albrecht; Dzhagan, Volodymyr M.; Haubold, Danny; Pohl, Darius; Schierning, Gabi; Nielsch, Kornelius; Lesnyak, Vladimir; Eychmüller, Alexander
    The n-type semiconductor system Bi2Te3Bi2Se3 is known as a low-temperature thermoelectric material with a potentially high efficiency. Herein, a facile approach is reported to synthesize core/shell heterostructured Bi2Te2Se/Bi2Te3 nanosheets (NSs) with lateral dimensions of 1-3 mu m and thickness of about 50nm. Bi2Te3 and Bi2Se3, as well as heterostructured Bi2Te2Se/Bi2Te3 NSs are obtained via colloidal synthesis. Heterostructured NSs show an inhomogeneous distribution of the chalcogen atoms forming selenium and tellurium-rich layers across the NS thickness, resulting in a core/shell structure. Detailed morphological studies reveal that these structures contain nanosized pores. These features contribute to the overall thermoelectric properties of the material, inducing strong phonon scattering at grain boundaries in compacted solids. NSs are processed into nanostructured bulks through spark plasma sintering of dry powders to form a thermoelectric material with high power factor. Electrical characterization of our materials reveals a strong anisotropic behavior in consolidated pellets. It is further demonstrated that by simple thermal annealing, core/shell structure can be controllably transformed into alloyed one. Using this approach pellets with Bi2Te2.55Se0.45 composition are obtained, which exhibit low thermal conductivity and high power factor for in-plane direction with zT of 1.34 at 400K.