Search Results

Now showing 1 - 2 of 2
  • Item
    The impact of surface morphology on the magnetovolume transition in magnetocaloric LaFe11.8Si1.2
    (New York : American Institute of Physics, 2016) Waske, A.; Lovell, E.; Funk, A.; Sellschopp, K.; Rack, A.; Giebeler, L.; Gostin, P.F.; Fähler, S.; Cohen, L.F.
    First order magnetocaloric materials reach high entropy changes but at the same time exhibit hysteresis losses which depend on the sample’s microstructure. We use non-destructive 3D X-ray microtomography to understand the role of surface morphology for the magnetovolume transition of LaFe11.8Si1.2. The technique provides unique information on the spatial distribution of the volume change at the transition and its relationship with the surface morphology. Complementary Hall probe imaging confirms that on a morphologically complex surface minimization of strain energy dominates. Our findings sketch the way for a tailored surface morphology with low hysteresis without changing the underlying phase transition.
  • Item
    Reducing the nucleation barrier in magnetocaloric Heusler alloys by nanoindentation
    (New York : American Institute of Physics, 2016) Niemann, R.; Hahn, S.; Diestel, A.; Backen, A.; Schultz, L.; Nielsch, K.; Wagner, M.F.-X.; Fähler, S.
    Magnetocaloric materials are promising as solid state refrigerants for more efficient and environmentally friendly cooling devices. The highest effects have been observed in materials that exhibit a first-order phase transition. These transformations proceed by nucleation and growth which lead to a hysteresis. Such irreversible processes are undesired since they heat up the material and reduce the efficiency of any cooling application. In this article, we demonstrate an approach to decrease the hysteresis by locally changing the nucleation barrier. We created artificial nucleation sites and analyzed the nucleation and growth processes in their proximity. We use Ni-Mn-Ga, a shape memory alloy that exhibits a martensitic transformation. Epitaxial films serve as a model system, but their high surface-to-volume ratio also allows for a fast heat transfer which is beneficial for a magnetocaloric regenerator geometry. Nanoindentation is used to create a well-defined defect. We quantify the austenite phase fraction in its proximity as a function of temperature which allows us to determine the influence of the defect on the transformation.