Search Results

Now showing 1 - 5 of 5
  • Item
    Origami-Inspired Shape Memory Folding Microactuator
    (Basel : MDPI, 2020) Seigner, Lena; Bezsmertna, Olha; Fähler, Sebastian; Tshikwand, Georgino; Wendler, Frank; Kohl, Manfred
    This paper presents the design, fabrication and performance of origami-based folding microactuators based on a cold-rolled NiTi foil of 20 µm thickness showing the one-way shape memory effect. Origami refers to a variety of techniques of transforming planar sheets into three-dimensional (3D) structures by folding, which has been introduced in science and engineering for, e.g., assembly and robotics. Here, NiTi microactuators are interconnected to rigid sections (tiles) forming an initial planar system that self-folds into a set of predetermined 3D shapes upon heating. While this concept has been demonstrated at the macro scale, we intend to transfer this concept into microtechnology by combining state-of-the art methods of micromachining. NiTi foils are micromachined by laser cutting or photolithography to achieve double-beam structures allowing for direct Joule heating with an electrical current. A thermo-mechanical treatment is used for shape setting of as-received specimens to reach a maximum folding angle of 180°. The bending moments, bending radii and load-dependent folding angles upon Joule heating are evaluated. The shape setting process is particularly effective for small bending radii, which, however generates residual plastic strain. After shape setting, unloaded beam structures show recoverable bending deflection between 0° and 140° for a maximum heating power of 900 mW. By introducing additional loads to account for the effect of the tiles, the smooth folding characteristic evolves into a sharp transition, whereby full deflection up to 180° is reached. The achieved results are an important step towards the development of cooperative multistable microactuator systems for 3D self-assembly.
  • Item
    Building Hierarchical Martensite
    (Weinheim : Wiley-VCH, 2020) Schwabe, Stefan; Niemann, Robert; Backen, Anja; Wolf, Daniel; Damm, Christine; Walter, Tina; Seiner, Hanuš; Heczko, Oleg; Nielsch, Kornelius; Fähler, Sebastian
    Martensitic materials show a complex, hierarchical microstructure containing structural domains separated by various types of twin boundaries. Several concepts exist to describe this microstructure on each length scale, however, there is no comprehensive approach bridging the whole range from the nano- up to the macroscopic scale. Here, it is described for a Ni-Mn-based Heusler alloy how this hierarchical microstructure is built from scratch with just one key parameter: the tetragonal distortion of the basic building block at the atomic level. Based on this initial block, five successive levels of nested building blocks are introduced. At each level, a larger building block is formed by twinning the preceding one to minimize the relevant energy contributions locally. This naturally explains the coexistence of different types of twin boundaries. The scale-bridging approach of nested building blocks is compared with experiments in real and reciprocal space. The approach of nested building blocks is versatile as it can be applied to the broad class of functional materials exhibiting diffusionless transformations. © 2020 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH
  • Item
    Voltage‐Controlled Deblocking of Magnetization Reversal in Thin Films by Tunable Domain Wall Interactions and Pinning Sites
    (Hoboken, NJ : Wiley, 2020) Zehner, Jonas; Soldatov, Ivan; Schneider, Sebastian; Heller, René; Khojasteh, Nasrin B.; Schiemenez, Sandra; Fähler, Sebastian; Nielsch, Kornelius; Schäfer, Rudolf; Leistner, Karin
    High energy efficiency of magnetic devices is crucial for applications such as data storage, computation, and actuation. Redox‐based (magneto‐ionic) voltage control of magnetism is a promising room‐temperature pathway to improve energy efficiency. However, for ferromagnetic metals, the magneto‐ionic effects studied so far require ultrathin films with tunable perpendicular magnetic anisotropy or nanoporous structures for appreciable effects. This paper reports a fully reversible, low voltage‐induced collapse of coercivity and remanence by redox reactions in iron oxide/iron films with uniaxial in‐plane anisotropy. In the initial iron oxide/iron films, Néel wall interactions stabilize a blocked state with high coercivity. During the voltage‐triggered reduction of the iron oxide layer, in situ Kerr microscopy reveals inverse changes of coercivity and anisotropy, and a coarsening of the magnetic microstructure. These results confirm a magneto‐ionic deblocking mechanism, which relies on changes of the Néel wall interactions, and of the microstructural domain‐wall‐pinning sites. With this approach, voltage‐controlled 180° magnetization switching with high energy‐efficiency is achieved. It opens up possibilities for developing magnetic devices programmable by ultralow power and for the reversible tuning of defect‐controlled materials in general.
  • Item
    Influencing Martensitic Transition in Epitaxial Ni-Mn-Ga-Co Films with Large Angle Grain Boundaries
    (Basel : MDPI, 2020) Lünser, Klara; Diestel, Anett; Nielsch, Kornelius; Fähler, Sebastian
    Magnetocaloric materials based on field-induced first order transformations such as Ni-Mn-Ga-Co are promising for more environmentally friendly cooling. Due to the underlying martensitic transformation, a large hysteresis can occur, which in turn reduces the efficiency of a cooling cycle. Here, we analyse the influence of the film microstructure on the thermal hysteresis and focus especially on large angle grain boundaries. We control the microstructure and grain boundary density by depositing films with local epitaxy on different substrates: Single crystalline MgO(0 0 1), MgO(1 1 0) and Al2O3(0 0 0 1). By combining local electron backscatter diffraction (EBSD) and global texture measurements with thermomagnetic measurements, we correlate a smaller hysteresis with the presence of grain boundaries. In films with grain boundaries, the hysteresis is decreased by about 30% compared to single crystalline films. Nevertheless, a large grain boundary density leads to a broadened transition. To explain this behaviour, we discuss the influence of grain boundaries on the martensitic transformation. While grain boundaries act as nucleation sites, they also lead to different strains in the material, which gives rise to various transition temperatures inside one film. We can show that a thoughtful design of the grain boundary microstructure is an important step to optimize the hysteresis.
  • Item
    Growth and martensitic transformation of ferromagnetic Co-Cr-Ga-Si epitaxial films
    (Abingdon : Taylor & Francis, 2023) Ge, Yuru; Lünser, Klara; Ganss, Fabian; Gaal, Peter; Fink, Lukas; Fähler, Sebastian
    During cooling, conventional martensitic transformation can only be realized from austenite to martensite. Recently, a so-called reentrant martensitic transformation attracted much interest due to an additional transformation from martensite to austenite during further cooling. Obviously, materials with this reentrant transformation will increase the number of physical effects and possible applications. However, until now, only bulk samples have been available, which are not suitable for applications in micro-devices. In this work, we focus on the Co-Cr-Ga-Si system and examine the suitability of this system for the growth of thin films. We observed that the films grow epitaxially on MgO (100) substrates and exhibit a martensitic transformation if deposited at a sufficiently high temperature or with an additional heat treatment. Films within the austenite state are ferromagnetic while films within the martensitic state just exhibit a very low ferromagnetic order.