Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Two-dimensional ferromagnetic extension of a topological insulator

2023, Kagerer, P., Fornari, C. I., Buchberger, S., Tschirner, T., Veyrat, L., Kamp, M., Tcakaev, A. V., Zabolotnyy, V., Morelhão, S. L., Geldiyev, B., Müller, S., Fedorov, A., Rienks, E., Gargiani, P., Valvidares, M., Folkers, L. C., Isaeva, A., Büchner, B., Hinkov, V., Claessen, R., Bentmann, H., Reinert, F.

Inducing a magnetic gap at the Dirac point of the topological surface state (TSS) in a three-dimensional (3D) topological insulator (TI) is a route to dissipationless charge and spin currents. Ideally, magnetic order is present only at the surface, as through proximity of a ferromagnetic (FM) layer. However, experimental evidence of such a proximity-induced Dirac mass gap is missing, likely due to an insufficient overlap of TSS and the FM subsystem. Here, we take a different approach, namely ferromagnetic extension (FME), using a thin film of the 3D TI Bi2Te3, interfaced with a monolayer of the lattice-matched van der Waals ferromagnet MnBi2Te4. Robust 2D ferromagnetism with out-of-plane anisotropy and a critical temperature of Tc≈15 K is demonstrated by x-ray magnetic dichroism and electrical transport measurements. Using angle-resolved photoelectron spectroscopy, we observe the opening of a sizable magnetic gap in the 2D FM phase, while the surface remains gapless in the paramagnetic phase above Tc. Ferromagnetic extension paves the way to explore the interplay of strictly 2D magnetism and topological surface states, providing perspectives for realizing robust quantum anomalous Hall and chiral Majorana states.

Loading...
Thumbnail Image
Item

Experimental Observation of Dirac Nodal Links in Centrosymmetric Semimetal TiB2

2018, Liu, Z., Lou, R., Guo, P., Wang, Q., Sun, S., Li, C., Thirupathaiah, S., Fedorov, A., Shen, D., Liu, K., Lei, H., Wang, S.

The topological nodal-line semimetal state, serving as a fertile ground for various topological quantum phases, where a topological insulator, Dirac semimetal, or Weyl semimetal can be realized when the certain protecting symmetry is broken, has only been experimentally studied in very few materials. In contrast to discrete nodes, nodal lines with rich topological configurations can lead to more unusual transport phenomena. Utilizing angle-resolved photoemission spectroscopy and first-principles calculations, here, we provide compelling evidence of nodal-line fermions in centrosymmetric semimetal TiB2 with a negligible spin-orbit coupling effect. With the band crossings just below the Fermi energy, two groups of Dirac nodal rings are clearly observed without any interference from other bands, one surrounding the Brillouin zone (BZ) corner in the horizontal mirror plane σh and the other surrounding the BZ center in the vertical mirror plane σv. The linear dispersions forming Dirac nodal rings are as wide as 2 eV. We further observe that the two groups of nodal rings link together along the Γ-K direction, composing a nodal-link configuration. The simple electronic structure with Dirac nodal links mainly constituting the Fermi surfaces suggests TiB2 as a remarkable platform for studying and applying the novel physical properties related to nodal-line fermions.