Search Results

Now showing 1 - 2 of 2
  • Item
    High-Quality Graphene Using Boudouard Reaction
    (Weinheim : Wiley-VCH, 2022) Grebenko, Artem K.; Krasnikov, Dmitry V.; Bubis, Anton V.; Stolyarov, Vasily S.; Vyalikh, Denis V.; Makarova, Anna A.; Fedorov, Alexander; Aitkulova, Aisuluu; Alekseeva, Alena A.; Gilshtein, Evgeniia; Bedran, Zakhar; Shmakov, Alexander N.; Alyabyeva, Liudmila; Mozhchil, Rais N.; Ionov, Andrey M.; Gorshunov, Boris P.; Laasonen, Kari; Podzorov, Vitaly; Nasibulin, Albert G.
    Following the game-changing high-pressure CO (HiPco) process that established the first facile route toward large-scale production of single-walled carbon nanotubes, CO synthesis of cm-sized graphene crystals of ultra-high purity grown during tens of minutes is proposed. The Boudouard reaction serves for the first time to produce individual monolayer structures on the surface of a metal catalyst, thereby providing a chemical vapor deposition technique free from molecular and atomic hydrogen as well as vacuum conditions. This approach facilitates inhibition of the graphene nucleation from the CO/CO2 mixture and maintains a high growth rate of graphene seeds reaching large-scale monocrystals. Unique features of the Boudouard reaction coupled with CO-driven catalyst engineering ensure not only suppression of the second layer growth but also provide a simple and reliable technique for surface cleaning. Aside from being a novel carbon source, carbon monoxide ensures peculiar modification of catalyst and in general opens avenues for breakthrough graphene-catalyst composite production.
  • Item
    Robust Magnetic Order Upon Ultrafast Excitation of an Antiferromagnet
    (Weinheim : Wiley-VCH, 2022) Lee, Sang‐Eun; Windsor, Yoav William; Fedorov, Alexander; Kliemt, Kristin; Krellner, Cornelius; Schüßler‐Langeheine, Christian; Pontius, Niko; Wolf, Martin; Atxitia, Unai; Vyalikh, Denis V.; Rettig, Laurenz
    The ultrafast manipulation of magnetic order due to optical excitation is governed by the intricate flow of energy and momentum between the electron, lattice, and spin subsystems. While various models are commonly employed to describe these dynamics, a prominent example being the microscopic three temperature model (M3TM), systematic, quantitative comparisons to both the dynamics of energy flow and magnetic order are scarce. Here, an M3TM was applied to the ultrafast magnetic order dynamics of the layered antiferromagnet GdRh2Si2. The femtosecond dynamics of electronic temperature, surface ferromagnetic order, and bulk antiferromagnetic order were explored at various pump fluences employing time- and angle-resolved photoemission spectroscopy and time-resolved resonant magnetic soft X-ray diffraction, respectively. After optical excitation, both the surface ferromagnetic order and the bulk antiferromagnetic order dynamics exhibit two-step demagnetization behaviors with two similar timescales (<1 ps, ∼10 ps), indicating a strong exchange coupling between localized 4f and itinerant conduction electrons. Despite a good qualitative agreement, the M3TM predicts larger demagnetization than the experimental observation, which can be phenomenologically described by a transient, fluence-dependent increased Néel temperature. The results indicate that effects beyond a mean-field description have to be considered for a quantitative description of ultrafast magnetic order dynamics.