Search Results

Now showing 1 - 2 of 2
  • Item
    Extremely large magnetoresistance from electron-hole compensation in the nodal-loop semimetal ZrP2
    (Woodbury, NY : Inst., 2021) Bannies, J.; Razzoli, E.; Michiardi, M.; Kung, H.-H.; Elfimov, I.S.; Yao, M.; Fedorov, A.; Fink, J.; Jozwiak, C.; Bostwick, A.; Rotenberg, E.; Damascelli, A.; Felser, C.
    Several early transition metal dipnictides (TMDPs) have been found to host topological semimetal states and exhibit large magnetoresistance (MR). In this paper, we use angle-resolved photoemission spectroscopy (ARPES) and magnetotransport to study the electronic properties of a TMDP ZrP2. We find that ZrP2 exhibits an extremely large and unsaturated MR of up to 40 000% at 2 K, which originates from an almost perfect electron-hole (e-h) compensation. Our band structure calculations further show that ZrP2 hosts a topological nodal loop in proximity to the Fermi level. Based on the ARPES measurements, we confirm the results of our calculations and determine the surface band structure. This paper establishes ZrP2 as a platform to investigate near-perfect e-h compensation and its interplay with topological band structures.
  • Item
    Comprehensive scan for nonmagnetic Weyl semimetals with nonlinear optical response
    (London : Nature Publishing Group, 2020) Xu, Q.; Zhang, Y.; Koepernik, K.; Shi, W.; van den Brink, J.; Felser, C.; Sun, Y.
    First-principles calculations have recently been used to develop comprehensive databases of nonmagnetic topological materials that are protected by time-reversal or crystalline symmetry. However, owing to the low symmetry requirement of Weyl points, a symmetry-based approach to identifying topological states cannot be applied to Weyl semimetals (WSMs). To date, WSMs with Weyl points in arbitrary positions are absent from the well-known databases. In this work, we develop an efficient algorithm to search for Weyl points automatically and establish a database of nonmagnetic WSMs with Weyl points near the Fermi level based on the experimental non-centrosymmetric crystal structures in the Inorganic Crystal Structure Database (ICSD). In total, 46 Weyl semimetals were discovered to have nearly clean Fermi surfaces and Weyl points within 300 meV of the Fermi level. Nine of them are chiral structures which may exhibit the quantized circular photogalvanic effect. In addition, the nonlinear optical response is studied and the giant shift current is explored. Besides nonmagnetic WSMs, our powerful tools can also be used in the discovery of magnetic topological materials.