Search Results

Now showing 1 - 10 of 13
  • Item
    Signatures of Sixfold Degenerate Exotic Fermions in a Superconducting Metal PdSb2
    (Weinheim : Wiley-VCH, 2020) Kumar, Nitesh; Yao, Mengyu; Nayak, Jayita; Vergniory, Maia G.; Bannies, Jörn; Wang, Zhijun; Schröter, Niels B.M.; Strocov, Vladimir N.; Müchler, Lukas; Shi, Wujun; Rienks, Emile D.L.; Mañes, J.L.; Shekhar, Chandra; Parkin, Stuart S.P.; Fink, Jörg; Fecher, Gerhard H.; Sun, Yan; Bernevig, B. Andrei; Felser, Claudia
    Multifold degenerate points in the electronic structure of metals lead to exotic behaviors. These range from twofold and fourfold degenerate Weyl and Dirac points, respectively, to sixfold and eightfold degenerate points that are predicted to give rise, under modest magnetic fields or strain, to topological semimetallic behaviors. The present study shows that the nonsymmorphic compound PdSb2 hosts six-component fermions or sextuplets. Using angle-resolved photoemission spectroscopy, crossing points formed by three twofold degenerate parabolic bands are directly observed at the corner of the Brillouin zone. The group theory analysis proves that under weak spin–orbit interaction, a band inversion occurs. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Laser-Assisted Floating Zone Growth of BaFe2S3 Large-Sized Ferromagnetic-Impurity-Free Single Crystals
    (Basel : MDPI, 2021) Amigó, Maria Lourdes; Maljuk, Andrey; Manna, Kaustuv; Stahl, Quirin; Felser, Claudia; Hess, Christian; Wolter, Anja U.B.; Geck, Jochen; Seiro, Silvia; Büchner, Bernd
    The quasi-one-dimensional antiferromagnetic insulator BaFe2S3 becomes superconducting under a hydrostatic pressure of ∼10 GPa. Single crystals of this compound are usually obtained by melting and further slow cooling of BaS or Ba, Fe, and S, and are small and needle-shaped (few mm long and 50–200 μm wide). A notable sample dependence on the antiferromagnetic transition temperature, transport behavior, and presence of superconductivity has been reported. In this work, we introduce a novel approach for the growth of high-quality single crystals of BaFe2S3 based on a laser-assisted floating zone method that yields large samples free of ferromagnetic impurities. We present the characterization of these crystals and the comparison with samples obtained using the procedure reported in the literature.
  • Item
    Detection of antiskyrmions by topological Hall effect in Heusler compounds
    (Woodbury, NY : Inst., 2020) Kumar, Vivek; Kumar, Nitesh; Reehuis, Manfred; Gayles, Jacob; Sukhanov, A.S.; Hoser, Andreas; Damay, Françoise; Shekhar, Chandra; Adler, Peter; Felser, Claudia
    Heusler compounds having D2d crystal symmetry gained much attention recently due to the stabilization of a vortexlike spin texture called antiskyrmions in thin lamellae of Mn1.4Pt0.9Pd0.1Sn as reported in the work of Nayak et al. [Nature (London) 548, 561 (2017)10.1038/nature23466]. Here we show that bulk Mn1.4Pt0.9Pd0.1Sn undergoes a spin-reorientation transition from a collinear ferromagnetic to a noncollinear configuration of Mn moments below 135 K, which is accompanied by the emergence of a topological Hall effect. We tune the topological Hall effect in Pd and Rh substituted Mn1.4PtSn Heusler compounds by changing the intrinsic magnetic properties and spin textures. A unique feature of the present system is the observation of a zero-field topological Hall resistivity with a sign change which indicates the robust formation of antiskyrmions. © 2020 authors. Published by the American Physical Society.
  • Item
    Tunable positions of Weyl nodes via magnetism and pressure in the ferromagnetic Weyl semimetal CeAlSi
    ([London] : Nature Publishing Group UK, 2024) Cheng, Erjian; Yan, Limin; Shi, Xianbiao; Lou, Rui; Fedorov, Alexander; Behnami, Mahdi; Yuan, Jian; Yang, Pengtao; Wang, Bosen; Cheng, Jin-Guang; Xu, Yuanji; Xu, Yang; Xia, Wei; Pavlovskii, Nikolai; Peets, Darren C.; Zhao, Weiwei; Wan, Yimin; Burkhardt, Ulrich; Guo, Yanfeng; Li, Shiyan; Felser, Claudia; Yang, Wenge; Büchner, Bernd
    The noncentrosymmetric ferromagnetic Weyl semimetal CeAlSi with simultaneous space-inversion and time-reversal symmetry breaking provides a unique platform for exploring novel topological states. Here, by employing multiple experimental techniques, we demonstrate that ferromagnetism and pressure can serve as efficient parameters to tune the positions of Weyl nodes in CeAlSi. At ambient pressure, a magnetism-facilitated anomalous Hall/Nernst effect (AHE/ANE) is uncovered. Angle-resolved photoemission spectroscopy (ARPES) measurements demonstrated that the Weyl nodes with opposite chirality are moving away from each other upon entering the ferromagnetic phase. Under pressure, by tracing the pressure evolution of AHE and band structure, we demonstrate that pressure could also serve as a pivotal knob to tune the positions of Weyl nodes. Moreover, multiple pressure-induced phase transitions are also revealed. These findings indicate that CeAlSi provides a unique and tunable platform for exploring exotic topological physics and electron correlations, as well as catering to potential applications, such as spintronics.
  • Item
    Observation of fractional spin textures in a Heusler material
    ([London] : Nature Publishing Group UK, 2022) Jena, Jagannath; Göbel, Börge; Hirosawa, Tomoki; Díaz, Sebastián A.; Wolf, Daniel; Hinokihara, Taichi; Kumar, Vivek; Mertig, Ingrid; Felser, Claudia; Lubk, Axel; Loss, Daniel; Parkin, Stuart S.P.
    Recently a zoology of non-collinear chiral spin textures has been discovered, most of which, such as skyrmions and antiskyrmions, have integer topological charges. Here we report the experimental real-space observation of the formation and stability of fractional antiskyrmions and fractional elliptical skyrmions in a Heusler material. These fractional objects appear, over a wide range of temperature and magnetic field, at the edges of a sample, whose interior is occupied by an array of nano-objects with integer topological charges, in agreement with our simulations. We explore the evolution of these objects in the presence of magnetic fields and show their interconversion to objects with integer topological charges. This means the topological charge can be varied continuously. These fractional spin textures are not just another type of skyrmion, but are essentially a new state of matter that emerges and lives only at the boundary of a magnetic system. The coexistence of both integer and fractionally charged spin textures in the same material makes the Heusler family of compounds unique for the manipulation of the real-space topology of spin textures and thus an exciting platform for spintronic and magnonic applications.
  • Item
    Mg3(Bi,Sb)2 single crystals towards high thermoelectric performance
    (Cambridge : RSC Publ., 2020) Pan, Yu; Yao, Mengyu; Hong, Xiaochen; Zhu, Yifan; Fan, Fengren; Imasato, Kazuki; He, Yangkun; Hess, Christian; Fink, Jörg; Yang, Jiong; Büchner, Bernd; Fu, Chenguang; Snyder, G. Jeffrey; Felser, Claudia
    The rapid growth of the thermoelectric cooler market makes the development of novel room temperature thermoelectric materials of great importance. Ternary n-type Mg3(Bi,Sb)2 alloys are promising alternatives to the state-of-the-art Bi2(Te,Se)3 alloys but grain boundary resistance is the most important limitation. n-type Mg3(Bi,Sb)2 single crystals with negligible grain boundaries are expected to have particularly high zT but have rarely been realized due to the demanding Mg-rich growth conditions required. Here, we report, for the first time, the thermoelectric properties of n-type Mg3(Bi,Sb)2 alloyed single crystals grown by a one-step Mg-flux method using sealed tantalum tubes. High weighted mobility ∼140 cm2 V−1 s−1 and a high zT of 0.82 at 315 K are achieved in Y-doped Mg3Bi1.25Sb0.75 single crystals. Through both experimental angle-resolved photoemission spectroscopy and theoretical calculations, we denote the origin of the high thermoelectric performance from a point of view of band widening effect and electronegativity, as well as the necessity to form high Bi/Sb ratio ternary Mg3(Bi,Sb)2 alloys. The present work paves the way for further development of Mg3(Bi,Sb)2 for near room temperature thermoelectric applications.
  • Item
    Simultaneous magnetic field and field gradient mapping of hexagonal MnNiGa by quantitative magnetic force microscopy
    (London : Springer Nature, 2023) Freitag, Norbert H.; Reiche, Christopher F.; Neu, Volker; Devi, Parul; Burkhardt, Ulrich; Felser, Claudia; Wolf, Daniel; Lubk, Axel; Büchner, Bernd; Mühl, Thomas
    Magnetic force microscopy (MFM) is a scanning microscopy technique that is commonly employed to probe the sample’s magnetostatic stray fields via their interaction with a magnetic probe tip. In this work, a quantitative, single-pass MFM technique is presented that maps one magnetic stray-field component and its spatial derivative at the same time. This technique uses a special cantilever design and a special high-aspect-ratio magnetic interaction tip that approximates a monopole-like moment. Experimental details, such as the control scheme, the sensor design, which enables simultaneous force and force gradient measurements, as well as the potential and limits of the monopole description of the tip moment are thoroughly discussed. To demonstrate the merit of this technique for studying complex magnetic samples it is applied to the examination of polycrystalline MnNiGa bulk samples. In these experiments, the focus lies on mapping and analyzing the stray-field distribution of individual bubble-like magnetization patterns in a centrosymmetric [001] MnNiGa phase. The experimental data is compared to calculated and simulated stray-field distributions of 3D magnetization textures, and, furthermore, bubble dimensions including diameters are evaluated. The results indicate that the magnetic bubbles have a significant spatial extent in depth and a buried bubble top base.
  • Item
    Antiskyrmions and their electrical footprint in crystalline mesoscale structures of Mn1.4PtSn
    (London : Springer Nature, 2022) Winter, Moritz; Goncalves, Francisco J. T.; Soldatov, Ivan; He, Yangkun; Zúñiga Céspedes, Belén E.; Milde, Peter; Lenz, Kilian; Hamann, Sandra; Uhlarz, Marc; Vir, Praveen; König, Markus; Moll, Philip J. W.; Schlitz, Richard; Goennenwein, Sebastian T. B.; Eng, Lukas M.; Schäfer, Rudolf; Wosnitza, Joachim; Felser, Claudia; Gayles, Jacob; Helm, Toni
    Skyrmionic materials hold the potential for future information technologies, such as racetrack memories. Key to that advancement are systems that exhibit high tunability and scalability, with stored information being easy to read and write by means of all-electrical techniques. Topological magnetic excitations such as skyrmions and antiskyrmions, give rise to a characteristic topological Hall effect. However, the electrical detection of antiskyrmions, in both thin films and bulk samples has been challenging to date. Here, we apply magneto-optical microscopy combined with electrical transport to explore the antiskyrmion phase as it emerges in crystalline mesoscale structures of the Heusler magnet Mn1.4PtSn. We reveal the Hall signature of antiskyrmions in line with our theoretical model, comprising anomalous and topological components. We examine its dependence on the vertical device thickness, field orientation, and temperature. Our atomistic simulations and experimental anisotropy studies demonstrate the link between antiskyrmions and a complex magnetism that consists of competing ferromagnetic, antiferromagnetic, and chiral exchange interactions, not captured by micromagnetic simulations.
  • Item
    A New Highly Anisotropic Rh-Based Heusler Compound for Magnetic Recording
    (Weinheim : Wiley-VCH, 2020) He, Yangkun; Fecher, Gerhard H.; Fu, Chenguang; Pan, Yu; Manna, Kaustuv; Kroder, Johannes; Jha, Ajay; Wang, Xiao; Hu, Zhiwei; Agrestini, Stefano; Herrero-Martín, Javier; Valvidares, Manuel; Skourski, Yurii; Schnelle, Walter; Stamenov, Plamen; Borrmann, Horst; Tjeng, Liu Hao; Schaefer, Rudolf; Parkin, Stuart S.P.; Coey, John Michael D.; Felser, Claudia
    The development of high-density magnetic recording media is limited by superparamagnetism in very small ferromagnetic crystals. Hard magnetic materials with strong perpendicular anisotropy offer stability and high recording density. To overcome the difficulty of writing media with a large coercivity, heat-assisted magnetic recording was developed, rapidly heating the media to the Curie temperature Tc before writing, followed by rapid cooling. Requirements are a suitable Tc, coupled with anisotropic thermal conductivity and hard magnetic properties. Here, Rh2CoSb is introduced as a new hard magnet with potential for thin-film magnetic recording. A magnetocrystalline anisotropy of 3.6 MJ m−3 is combined with a saturation magnetization of μ0Ms = 0.52 T at 2 K (2.2 MJ m−3 and 0.44 T at room temperature). The magnetic hardness parameter of 3.7 at room temperature is the highest observed for any rare-earth-free hard magnet. The anisotropy is related to an unquenched orbital moment of 0.42 μB on Co, which is hybridized with neighboring Rh atoms with a large spin–orbit interaction. Moreover, the pronounced temperature dependence of the anisotropy that follows from its Tc of 450 K, together with a thermal conductivity of 20 W m−1 K−1, make Rh2CoSb a candidate for the development of heat-assisted writing with a recording density in excess of 10 Tb in.−2. © 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    Thermoelectric Properties of Novel Semimetals: A Case Study of YbMnSb2
    (Weinheim : Wiley-VCH, 2020) Pan, Yu; Fan, Feng-Ren; Hong, Xiaochen; He, Bin; Le, Congcong; Schnelle, Walter; He, Yangkun; Imasato, Kazuki; Borrmann, Horst; Hess, Christian; Büchner, Bernd; Sun, Yan; Fu, Chenguang; Snyder, G. Jeffrey; Felser, Claudia
    The emerging class of topological materials provides a platform to engineer exotic electronic structures for a variety of applications. As complex band structures and Fermi surfaces can directly benefit thermoelectric performance it is important to identify the role of featured topological bands in thermoelectrics particularly when there are coexisting classic regular bands. In this work, the contribution of Dirac bands to thermoelectric performance and their ability to concurrently achieve large thermopower and low resistivity in novel semimetals is investigated. By examining the YbMnSb2 nodal line semimetal as an example, the Dirac bands appear to provide a low resistivity along the direction in which they are highly dispersive. Moreover, because of the regular-band-provided density of states, a large Seebeck coefficient over 160 µV K−1 at 300 K is achieved in both directions, which is very high for a semimetal with high carrier concentration. The combined highly dispersive Dirac and regular bands lead to ten times increase in power factor, reaching a value of 2.1 mW m−1 K−2 at 300 K. The present work highlights the potential of such novel semimetals for unusual electronic transport properties and guides strategies towards high thermoelectric performance. © 2020 The Authors. Advanced Materials published by Wiley-VCH GmbH