Search Results

Now showing 1 - 2 of 2
  • Item
    Time‐Dependent Cation Selectivity of Titanium Carbide MXene in Aqueous Solution
    (Weinheim : Wiley-VCH, 2022) Wang, Lei; Torkamanzadeh, Mohammad; Majed, Ahmad; Zhang, Yuan; Wang, Qingsong; Breitung, Ben; Feng, Guang; Naguib, Michael; Presser, Volker
    Electrochemical ion separation is a promising technology to recover valuable ionic species from water. Pseudocapacitive materials, especially 2D materials, are up-and-coming electrodes for electrochemical ion separation. For implementation, it is essential to understand the interplay of the intrinsic preference of a specific ion (by charge/size), kinetic ion preference (by mobility), and crystal structure changes. Ti3C2Tz MXene is chosen here to investigate its selective behavior toward alkali and alkaline earth cations. Utilizing an online inductively coupled plasma system, it is found that Ti3C2Tz shows a time-dependent selectivity feature. In the early stage of charging (up to about 50 min), K+ is preferred, while ultimately Ca2+ and Mg2+ uptake dominate; this unique phenomenon is related to dehydration energy barriers and the ion exchange effect between divalent and monovalent cations. Given the wide variety of MXenes, this work opens the door to a new avenue where selective ion-separation with MXene can be further engineered and optimized.
  • Item
    Ionophobicity of carbon sub-nanometer pores enables efficient desalination at high salinity
    (Maryland Heights, MO : Cell Press, 2022) Zhang, Yuan; Prehal, Christian; Jiang, Huili; Liu, Yang; Feng, Guang; Presser, Volker
    Electrochemical seawater desalination has drawn significant attention as an energy-efficient technique to address the global issue of water remediation. Microporous carbons, that is, carbons with pore sizes smaller than 2 nm, are commonly used for capacitive deionization. However, micropores are ineffective for capacitive deionization at high molar strength because of their inability to permselectively uptake ions. In our work, we combine experimental work with molecular dynamics simulation and reveal the ability of sub-nanometer pores (ultramicropores) to effectively desalinate aqueous media at seawater-like molar strength. This is done without any ion-exchange membrane. The desalination capacity in 600 mM reaches 12 mg/g, with a charge efficiency of 94% and high cycling stability over 200 cycles (97% of charge efficiency retention). Using molecular dynamic simulations and providing experimental data, our work makes it possible both to understand and to calculate desalination capacity and charge efficiency at high molar strength as a function of pore size.