Search Results

Now showing 1 - 2 of 2
  • Item
    Persistent peri-Heptacene: Synthesis and In Situ Characterization
    (Weinheim : Wiley-VCH, 2021) Ajayakumar, M.R.; Ma, Ji; Lucotti, Andrea; Schellhammer, Karl Sebastian; Serra, Gianluca; Dmitrieva, Evgenia; Rosenkranz, Marco; Komber, Hartmut; Liu, Junzhi; Ortmann, Frank; Tommasini, Matteo; Feng, Xinliang
    n-peri-Acenes (n-PAs) have gained interest as model systems of zigzag-edged graphene nanoribbons for potential applications in nanoelectronics and spintronics. However, the synthesis of n-PAs larger than peri-tetracene remains challenging because of their intrinsic open-shell character and high reactivity. Presented here is the synthesis of a hitherto unknown n-PA, that is, peri-heptacene (7-PA), in which the reactive zigzag edges are kinetically protected with eight 4-tBu-C6H4 groups. The formation of 7-PA is validated by high-resolution mass spectrometry and in situ FT-Raman spectroscopy. 7-PA displays a narrow optical energy gap of 1.01 eV and exhibits persistent stability (t1/2≈25 min) under inert conditions. Moreover, electron-spin resonance measurements and theoretical studies reveal that 7-PA exhibits an open-shell feature and a significant tetraradical character. This strategy could be considered a modular approach for the construction of next-generation (3 N+1)-PAs (where N≥3). © 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH
  • Item
    Highly Crystalline and Semiconducting Imine-Based Two-Dimensional Polymers Enabled by Interfacial Synthesis
    (Weinheim : Wiley-VCH, 2020) Sahabudeen, Hafeesudeen; Qi, Haoyuan; Ballabio, Marco; Položij, Miroslav; Olthof, Selina; Shivhare, Rishi; Jing, Yu; Park, SangWook; Liu, Kejun; Zhang, Tao; Ma, Ji; Rellinghaus, Bernd; Mannsfeld, Stefan; Heine, Thomas; Bonn, Mischa; Cánovas, Enrique; Zheng, Zhikun; Kaiser, Ute; Dong, Renhao; Feng, Xinliang
    Single-layer and multi-layer 2D polyimine films have been achieved through interfacial synthesis methods. However, it remains a great challenge to achieve the maximum degree of crystallinity in the 2D polyimines, which largely limits the long-range transport properties. Here we employ a surfactant-monolayer-assisted interfacial synthesis (SMAIS) method for the successful preparation of porphyrin and triazine containing polyimine-based 2D polymer (PI-2DP) films with square and hexagonal lattices, respectively. The synthetic PI-2DP films are featured with polycrystalline multilayers with tunable thickness from 6 to 200 nm and large crystalline domains (100–150 nm in size). Intrigued by high crystallinity and the presence of electroactive porphyrin moieties, the optoelectronic properties of PI-2DP are investigated by time-resolved terahertz spectroscopy. Typically, the porphyrin-based PI-2DP 1 film exhibits a p-type semiconductor behavior with a band gap of 1.38 eV and hole mobility as high as 0.01 cm2 V−1 s−1, superior to the previously reported polyimine based materials. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.