Search Results

Now showing 1 - 2 of 2
  • Item
    Highly Crystalline and Semiconducting Imine-Based Two-Dimensional Polymers Enabled by Interfacial Synthesis
    (Weinheim : Wiley-VCH, 2020) Sahabudeen, Hafeesudeen; Qi, Haoyuan; Ballabio, Marco; Položij, Miroslav; Olthof, Selina; Shivhare, Rishi; Jing, Yu; Park, SangWook; Liu, Kejun; Zhang, Tao; Ma, Ji; Rellinghaus, Bernd; Mannsfeld, Stefan; Heine, Thomas; Bonn, Mischa; Cánovas, Enrique; Zheng, Zhikun; Kaiser, Ute; Dong, Renhao; Feng, Xinliang
    Single-layer and multi-layer 2D polyimine films have been achieved through interfacial synthesis methods. However, it remains a great challenge to achieve the maximum degree of crystallinity in the 2D polyimines, which largely limits the long-range transport properties. Here we employ a surfactant-monolayer-assisted interfacial synthesis (SMAIS) method for the successful preparation of porphyrin and triazine containing polyimine-based 2D polymer (PI-2DP) films with square and hexagonal lattices, respectively. The synthetic PI-2DP films are featured with polycrystalline multilayers with tunable thickness from 6 to 200 nm and large crystalline domains (100–150 nm in size). Intrigued by high crystallinity and the presence of electroactive porphyrin moieties, the optoelectronic properties of PI-2DP are investigated by time-resolved terahertz spectroscopy. Typically, the porphyrin-based PI-2DP 1 film exhibits a p-type semiconductor behavior with a band gap of 1.38 eV and hole mobility as high as 0.01 cm2 V−1 s−1, superior to the previously reported polyimine based materials. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Two-Dimensional Boronate Ester Covalent Organic Framework Thin Films with Large Single Crystalline Domains for a Neuromorphic Memory Device
    (Weinheim : Wiley-VCH, 2020) Park, SangWook; Liao, Zhongquan; Ibarlucea, Bergoi; Qi, Haoyuan; Lin, Hung-Hsuan; Becker, Daniel; Melidonie, Jason; Zhang, Tao; Sahabudeen, Hafeesudeen; Baraban, Larysa; Baek, Chang-Ki; Zheng, Zhikun; Zschech, Ehrenfried; Fery, Andreas; Heine, Thomas; Kaiser, Ute; Cuniberti, Gianaurelio; Dong, Renhao; Feng, Xinliang
    Despite the recent progress in the synthesis of crystalline boronate ester covalent organic frameworks (BECOFs) in powder and thin-film through solvothermal method and on-solid-surface synthesis, respectively, their applications in electronics, remain less explored due to the challenges in thin-film processability and device integration associated with the control of film thickness, layer orientation, stability and crystallinity. Moreover, although the crystalline domain sizes of the powder samples can reach micrometer scale (up to ≈1.5 μm), the reported thin-film samples have so far rather small crystalline domains up to 100 nm. Here we demonstrate a general and efficient synthesis of crystalline two-dimensional (2D) BECOF films composed of porphyrin macrocycles and phenyl or naphthyl linkers (named as 2D BECOF-PP or 2D BECOF-PN) by employing a surfactant-monolayer-assisted interfacial synthesis (SMAIS) on the water surface. The achieved 2D BECOF-PP is featured as free-standing thin film with large single-crystalline domains up to ≈60 μm2 and tunable thickness from 6 to 16 nm. A hybrid memory device composed of 2D BECOF-PP film on silicon nanowire-based field-effect transistor is demonstrated as a bio-inspired system to mimic neuronal synapses, displaying a learning–erasing–forgetting memory process. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.