Search Results

Now showing 1 - 3 of 3
  • Item
    A Two-Dimensional Polyimide-Graphene Heterostructure with Ultra-fast Interlayer Charge Transfer
    (Weinheim : Wiley-VCH, 2021) Liu, Kejun; Li, Jiang; Qi, Haoyuan; Hambsch, Mike; Rawle, Jonathan; Vázquez, Adrián Romaní; Nia, Ali Shaygan; Pashkin, Alexej; Schneider, Harald; Polozij, Mirosllav; Heine, Thomas; Helm, Manfred; Mannsfeld, Stefan C.B.; Kaiser, Ute; Dong, Renhao; Feng, Xinliang
    Two-dimensional polymers (2DPs) are a class of atomically/molecularly thin crystalline organic 2D materials. They are intriguing candidates for the development of unprecedented organic–inorganic 2D van der Waals heterostructures (vdWHs) with exotic physicochemical properties. In this work, we demonstrate the on-water surface synthesis of large-area (cm2), monolayer 2D polyimide (2DPI) with 3.1-nm lattice. Such 2DPI comprises metal-free porphyrin and perylene units linked by imide bonds. We further achieve a scalable synthesis of 2DPI-graphene (2DPI-G) vdWHs via a face-to-face co-assembly of graphene and 2DPI on the water surface. Remarkably, femtosecond transient absorption spectroscopy reveals an ultra-fast interlayer charge transfer (ca. 60 fs) in the resultant 2DPI-G vdWH upon protonation by acid, which is equivalent to that of the fastest reports among inorganic 2D vdWHs. Such large interlayer electronic coupling is ascribed to the interlayer cation–π interaction between 2DP and graphene. © 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH
  • Item
    Thiophene-Bridged Donor–Acceptor sp2-Carbon-Linked 2D Conjugated Polymers as Photocathodes for Water Reduction
    (Weinheim : Wiley-VCH, 2021) Xu, Shunqi; Sun, Hanjun; Addicoat, Matthew; Biswal, Bishnu P.; He, Fan; Park, SangWook; Paasch, Silvia; Zhang, Tao; Sheng, Wenbo; Brunner, Eike; Hou, Yang; Richter, Marcus; Feng, Xinliang
    Photoelectrochemical (PEC) water reduction, converting solar energy into environmentally friendly hydrogen fuel, requires delicate design and synthesis of semiconductors with appropriate bandgaps, suitable energy levels of the frontier orbitals, and high intrinsic charge mobility. In this work, the synthesis of a novel bithiophene-bridged donor–acceptor-based 2D sp2-carbon-linked conjugated polymer (2D CCP) is demonstrated. The Knoevenagel polymerization between the electron-accepting building block 2,3,8,9,14,15-hexa(4-formylphenyl) diquinoxalino[2,3-a:2′,3′-c]phenazine (HATN-6CHO) and the first electron-donating linker 2,2′-([2,2′-bithiophene]-5,5′-diyl)diacetonitrile (ThDAN) provides the 2D CCP-HATNThDAN (2D CCP-Th). Compared with the corresponding biphenyl-bridged 2D CCP-HATN-BDAN (2D CCP-BD), the bithiophene-based 2D CCP-Th exhibits a wide light-harvesting range (up to 674 nm), a optical energy gap (2.04 eV), and highest energy occupied molecular orbital–lowest unoccupied molecular orbital distributions for facilitated charge transfer, which make 2D CCP-Th a promising candidate for PEC water reduction. As a result, 2D CCP-Th presents a superb H2-evolution photocurrent density up to ≈7.9 µA cm−2 at 0 V versus reversible hydrogen electrode, which is superior to the reported 2D covalent organic frameworks and most carbon nitride materials (0.09–6.0 µA cm−2). Density functional theory calculations identify the thiophene units and cyano substituents at the vinylene linkage as active sites for the evolution of H2. © 2020 The Authors. Advanced Materials published by Wiley-VCH GmbH
  • Item
    Reduced Intrinsic Non-Radiative Losses Allow Room-Temperature Triplet Emission from Purely Organic Emitters
    (Weinheim : Wiley-VCH, 2021) Li, Yungui; Jiang, Lihui; Liu, Wenlan; Xu, Shunqi; Li, Tian-Yi; Fries, Felix; Zeika, Olaf; Zou, Yingping; Ramanan, Charusheela; Lenk, Simone; Scholz, Reinhard; Andrienko, Denis; Feng, Xinliang; Leo, Karl; Reineke, Sebastian
    Persistent luminescence from triplet excitons in organic molecules is rare, as fast non-radiative deactivation typically dominates over radiative transitions. This work demonstrates that the substitution of a hydrogen atom in a derivative of phenanthroimidazole with an N-phenyl ring can substantially stabilize the excited state. This stabilization converts an organic material without phosphorescence emission into a molecular system exhibiting efficient and ultralong afterglow phosphorescence at room temperature. Results from systematic photophysical investigations, kinetic modeling, excited-state dynamic modeling, and single-crystal structure analysis identify that the long-lived triplets originate from a reduction of intrinsic non-radiative molecular relaxations. Further modification of the N-phenyl ring with halogen atoms affects the afterglow lifetime and quantum yield. As a proof-of-concept, an anticounterfeiting device is demonstrated with a time-dependent Morse code feature for data encryption based on these emitters. A fundamental design principle is outlined to achieve long-lived and emissive triplet states by suppressing intrinsic non-radiative relaxations in the form of molecular vibrations or rotations.