Search Results

Now showing 1 - 2 of 2
  • Item
    A High-Voltage, Dendrite-Free, and Durable Zn–Graphite Battery
    (Weinheim : Wiley-VCH, 2019) Wang, Gang; Kohn, Benjamin; Scheler, Ulrich; Wang, Faxing; Oswald, Steffen; Löffler, Markus; Tan, Deming; Zhang, Panpan; Zhang, Jian; Feng, Xinliang
    The intrinsic advantages of metallic Zn, like high theoretical capacity (820 mAh g−1), high abundance, low toxicity, and high safety have driven the recent booming development of rechargeable Zn batteries. However, the lack of high-voltage electrolyte and cathode materials restricts the cell voltage mostly to below 2 V. Moreover, dendrite formation and the poor rechargeability of the Zn anode hinder the long-term operation of Zn batteries. Here a high-voltage and durable Zn–graphite battery, which is enabled by a LiPF6-containing hybrid electrolyte, is reported. The presence of LiPF6 efficiently suppresses the anodic oxidation of Zn electrolyte and leads to a super-wide electrochemical stability window of 4 V (vs Zn/Zn2+). Both dendrite-free Zn plating/stripping and reversible dual-anion intercalation into the graphite cathode are realized in the hybrid electrolyte. The resultant Zn–graphite battery performs stably at a high voltage of 2.8 V with a record midpoint discharge voltage of 2.2 V. After 2000 cycles at a high charge–discharge rate, high capacity retention of 97.5% is achieved with ≈100% Coulombic efficiency. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
  • Item
    Tailoring Magnetic Features in Zigzag-Edged Nanographenes by Controlled Diels–Alder Reactions
    (Weinheim : Wiley-VCH, 2020) Ajayakumar, M.R.; Fu, Yubin; Liu, Fupin; Komber, Hartmut; Tkachova, Valeriya; Xu, Chi; Zhou, Shengqiang; Popov, Alexey A.; Liu, Junzhi; Feng, Xinliang
    Nanographenes (NGs) with tunable electronic and magnetic properties have attracted enormous attention in the realm of carbon-based nanoelectronics. In particular, NGs with biradical character at the ground state are promising building units for molecular spintronics. However, most of the biradicaloids are susceptible to oxidation under ambient conditions and photolytic degradation, which hamper their further applications. Herein, we demonstrated the feasibility of tuning the magnetic properties of zigzag-edged NGs in order to enhance their stability via the controlled Diels–Alder reactions of peri-tetracene (4-PA). The unstable 4-PA (y0=0.72; half-life, t1/2=3 h) was transformed into the unprecedented benzo-peri-tetracenes (BPTs) by a one-side Diels–Alder reaction, which featured a biradical character at the ground state (y0=0.60) and exhibited remarkable stability under ambient conditions for several months. In addition, the fully zigzag-edged circumanthracenes (CAs) were achieved by two-fold or stepwise Diels–Alder reactions of 4-PA, in which the magnetic properties could be controlled by employing the corresponding dienophiles. Our work reported herein opens avenues for the synthesis of novel zigzag-edged NGs with tailor-made magnetic properties. © 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim