Search Results

Now showing 1 - 2 of 2
  • Item
    Polar middle atmosphere temperature climatology from Rayleigh lidar measurements at ALOMAR (69° N)
    (München : European Geopyhsical Union, 2008) Schöch, A.; Baumgarten, G.; Fiedler, J.
    Rayleigh lidar temperature profiles have been derived in the polar middle atmosphere from 834 measurements with the ALOMAR Rayleigh/Mie/Raman lidar (69.3° N, 16.0° E) in the years 1997–2005. Since our instrument is able to operate under full daylight conditions, the unique data set presented here extends over the entire year and covers the altitude region 30 km–85 km in winter and 30 km–65 km in summer. Comparisons of our lidar data set to reference atmospheres and ECMWF analyses show agreement within a few Kelvin in summer but in winter higher temperatures below 55 km and lower temperatures above by as much as 25 K, due likely to superior resolution of stratospheric warming and associated mesospheric cooling events. We also present a temperature climatology for the entire lower and middle atmosphere at 69° N obtained from a combination of lidar measurements, falling sphere measurements and ECMWF analyses. Day to day temperature variability in the lidar data is found to be largest in winter and smallest in summer.
  • Item
    Mesospheric anomalous diffusion during noctilucent cloud scenarios
    (Göttingen : Copernicus GmbH, 2019) Laskar, F.I.; Stober, G.; Fiedler, J.; Oppenheim, M.M.; Chau, J.L.; Pallamraju, D.; Pedatella, N.M.; Tsutsumi, M.; Renkwitz, T.
    The Andenes specular meteor radar shows meteor trail diffusion rates increasing on average by about 10% at times and locations where a lidar observes noctilucent clouds (NLCs). This high-latitude effect has been attributed to the presence of charged NLC after exploring possible contributions from thermal tides. To make this claim, the current study evaluates data from three stations at high, middle, and low latitudes for the years 2012 to 2016 to show that NLC influence on the meteor trail diffusion is independent of thermal tides. The observations also show that the meteor trail diffusion enhancement during NLC cover exists only at high latitudes and near the peaks of NLC layers. This paper discusses a number of possible explanations for changes in the regions with NLCs and leans towards the hypothesis that the relative abundance of background electron density plays the leading role. A more accurate model of the meteor trail diffusion around NLC particles would help researchers determine mesospheric temperature and neutral density profiles from meteor radars at high latitudes. © 2019 Author(s).