Search Results

Now showing 1 - 2 of 2
  • Item
    Unravelling New Processes at Interfaces: Photochemical Isoprene Production at the Sea Surface
    (Columbus, Ohio : American Chemical Society, 2015) Ciuraru, Raluca; Fine, Ludovic; van Pinxteren, Manuela; D’Anna, Barbara; Herrmann, Hartmut; George, Christian
    Isoprene is an important reactive gas that is produced mainly in terrestrial ecosystems but is also produced in marine ecosystems. In the marine environment, isoprene is produced in the seawater by various biological processes. Here, we show that photosensitized reactions involving the sea-surface microlayer lead to the production of significant amounts of isoprene. It is suggested that H-abstraction processes are initiated by photochemically excited dissolved organic matter which will the degrade fatty acids acting as surfactants. This chemical interfacial processing may represent a significant abiotic source of isoprene in the marine boundary layer.
  • Item
    Photosensitized production of functionalized and unsaturated organic compounds at the air-sea interface
    (London : Nature Publishing Group, 2015) Ciuraru, Raluca; Fine, Ludovic; van Pinxteren, Manuela; D’Anna, Barbara; Herrmann, Hartmut; George, Christian
    The sea-surface microlayer (SML) has different physical, chemical and biological properties compared to the subsurface water, with an enrichment of organic matter i.e., dissolved organic matter including UV absorbing humic substances, fatty acids and many others. Here we present experimental evidence that dissolved organic matter, such as humic acids, when exposed to sunlight, can photosensitize the chemical conversion of linear saturated fatty acids at the air-water interface into unsaturated functionalized gas phase products (i.e. saturated and unsaturated aldehydes and acids, alkenes and dienes,…) which are known precursors of secondary organic aerosols. These functionalized molecules have previously been thought to be of biological origin, but here we demonstrate that abiotic interfacial photochemistry has the potential to produce such molecules. As the ocean is widely covered by the SML, this new understanding will impact on our ability to describe atmospheric chemistry in the marine environment.