Search Results

Now showing 1 - 8 of 8
  • Item
    Short-Range Cooperative Slow-down of Water Solvation Dynamics Around SO42--Mg2+ Ion Pairs
    (Washington, DC : American Chemical Society, 2022) Kundu, Achintya; Mamatkulov, Shavkat I.; Brünig, Florian N.; Bonthuis, Douwe Jan; Netz, Roland R.; Elsaesser, Thomas; Fingerhut, Benjamin P.
    The presence of ions affects the structure and dynamics of water on a multitude of length and time scales. In this context, pairs of Mg2+ and SO42- ions in water constitute a prototypical system for which conflicting pictures of hydration geometries and dynamics have been reported. Key issues are the molecular pair and solvation shell geometries, the spatial range of electric interactions, and their impact on solvation dynamics. Here, we introduce asymmetric SO42- stretching vibrations as new and most specific local probes of solvation dynamics that allow to access ion hydration dynamics at the dilute concentration (0.2 M) of a native electrolyte environment. Highly sensitive heterodyne 2D-IR spectroscopy in the fingerprint region of the SO42- ions around 1100 cm-1 reveals a specific slow-down of solvation dynamics for hydrated MgSO4 and for Na2SO4 in the presence of Mg2+ ions, which manifests as a retardation of spectral diffusion compared to aqueous Na2SO4 solutions in the absence of Mg2+ ions. Extensive molecular dynamics and density functional theory QM/MM simulations provide a microscopic view of the observed ultrafast dephasing and hydration dynamics. They suggest a molecular picture where the slow-down of hydration dynamics arises from the structural peculiarities of solvent-shared SO42--Mg2+ ion pairs.
  • Item
    Molecular couplings and energy exchange between DNA and water mapped by femtosecond infrared spectroscopy of backbone vibrations
    (Melville, NY : AIP Publishing LLC, 2017) Liu, Yingliang; Guchhait, Biswajit; Siebert, Torsten; Fingerhut, Benjamin P.; Elsaesser, Thomas
    Molecular couplings between DNA and water together with the accompanying processes of energy exchange are mapped via the ultrafast response of DNA backbone vibrations after OH stretch excitation of the water shell. Native salmon testes DNA is studied in femtosecond pump-probe experiments under conditions of full hydration and at a reduced hydration level with two water layers around the double helix. Independent of their local hydration patterns, all backbone vibrations in the frequency range from 940 to 1120 cm-1 display a quasi-instantaneous reshaping of the spectral envelopes of their fundamental absorption bands upon excitation of the water shell. The subsequent reshaping kinetics encompass a one-picosecond component, reflecting the formation of a hot ground state of the water shell, and a slower contribution on a time scale of tens of picoseconds. Such results are benchmarked by measurements with resonant excitation of the backbone modes, resulting in distinctly different absorption changes. We assign the fast changes of DNA absorption after OH stretch excitation to structural changes in the water shell which couple to DNA through the local electric fields. The second slower process is attributed to a flow of excess energy from the water shell into DNA, establishing a common heated ground state in the molecular ensemble. This interpretation is supported by theoretical calculations of the electric fields exerted by the water shell at different temperatures.
  • Item
    Monitoring conical intersections in the ring opening of furan by attosecond stimulated X-ray Raman spectroscopy
    (Melville, NY : AIP Publishing LLC, 2015) Hua, Weijie; Oesterling, Sven; Biggs, Jason D.; Zhang, Yu; Ando, Hideo; de Vivie-Riedle, Regina; Fingerhut, Benjamin P.; Mukamel, Shaul
    Attosecond X-ray pulses are short enough to capture snapshots of molecules undergoing nonadiabatic electron and nuclear dynamics at conical intersections (CoIns). We show that a stimulated Raman probe induced by a combination of an attosecond and a femtosecond pulse has a unique temporal and spectral resolution for probing the nonadiabatic dynamics and detecting the ultrafast (∼4.5 fs) passage through a CoIn. This is demonstrated by a multiconfigurational self-consistent-field study of the dynamics and spectroscopy of the furan ring-opening reaction. Trajectories generated by surface hopping simulations were used to predict Attosecond Stimulated X-ray Raman Spectroscopy signals at reactant and product structures as well as representative snapshots along the conical intersection seam. The signals are highly sensitive to the changes in nonadiabatically coupled electronic structure and geometry.
  • Item
    Field-Induced Tunneling Ionization and Terahertz-Driven Electron Dynamics in Liquid Water
    (Washington, DC : ACS, 2020) Ghalgaoui, Ahmed; Koll, Lisa-Marie; Schütte, Bernd; Fingerhut, Benjamin P.; Reimann, Klaus; Woerner, Michael; Elsaesser, Thomas
    Liquid water at ambient temperature displays ultrafast molecular motions and concomitant fluctuations of very strong electric fields originating from the dipolar H2O molecules. We show that such random intermolecular fields induce the tunnel ionization of water molecules, which becomes irreversible if an external terahertz (THz) pulse imposes an additional directed electric field on the liquid. Time-resolved nonlinear THz spectroscopy maps charge separation, transport, and localization of the released electrons on a few-picosecond time scale. The highly polarizable localized electrons modify the THz absorption spectrum and refractive index of water, a manifestation of a highly nonlinear response. Our results demonstrate how the interplay of local electric field fluctuations and external electric fields allows for steering charge dynamics and dielectric properties in aqueous systems. Copyright © 2020 American Chemical Society.
  • Item
    On the role of non-diagonal system-environment interactions in bridge-mediated electron transfer
    (Melville, NY : American Institute of Physics, 2020) Acharyya, Nirmalendu; Ovcharenko, Roman; Fingerhut, Benjamin P.
    Bridge-mediated electron transfer (ET) between a donor and an acceptor is prototypical for the description of numerous most important ET scenarios. While multi-step ET and the interplay of sequential and direct superexchange transfer pathways in the donor-bridge-acceptor (D-B-A) model are increasingly understood, the influence of off-diagonal system-bath interactions on the transfer dynamics is less explored. Off-diagonal interactions account for the dependence of the ET coupling elements on nuclear coordinates (non-Condon effects) and are typically neglected. Here, we numerically investigate with quasi-adiabatic propagator path integral simulations the impact of off-diagonal system-environment interactions on the transfer dynamics for a wide range of scenarios in the D-B-A model. We demonstrate that off-diagonal system-environment interactions can have profound impact on the bridge-mediated ET dynamics. In the considered scenarios, the dynamics itself does not allow for a rigorous assignment of the underlying transfer mechanism. Furthermore, we demonstrate how off-diagonal system-environment interaction mediates anomalous localization by preventing long-time depopulation of the bridge B and how coherent transfer dynamics between donor D and acceptor A can be facilitated. The arising non-exponential short-time dynamics and coherent oscillations are interpreted within an equivalent Hamiltonian representation of a primary reaction coordinate model that reveals how the complex vibronic interplay of vibrational and electronic degrees of freedom underlying the non-Condon effects can impose donor-to-acceptor coherence transfer on short timescales. © 2020 Author(s).
  • Item
    Phosphate Vibrations Probe Electric Fields in Hydrated Biomolecules: Spectroscopy, Dynamics, and Interactions
    (Washington, DC : Soc., 2021) Elsaesser, Thomas; Schauss, Jakob; Kundu, Achintya; Fingerhut, Benjamin P.
    Electric interactions have a strong impact on the structure and dynamics of biomolecules in their native water environment. Given the variety of water arrangements in hydration shells and the femto- to subnanosecond time range of structural fluctuations, there is a strong quest for sensitive noninvasive probes of local electric fields. The stretching vibrations of phosphate groups, in particular the asymmetric (PO2)− stretching vibration νAS(PO2)−, allow for a quantitative mapping of dynamic electric fields in aqueous environments via a field-induced redshift of their transition frequencies and concomitant changes of vibrational line shapes. We present a systematic study of νAS(PO2)− excitations in molecular systems of increasing complexity, including dimethyl phosphate (DMP), short DNA and RNA duplex structures, and transfer RNA (tRNA) in water. A combination of linear infrared absorption, two-dimensional infrared (2D-IR) spectroscopy, and molecular dynamics (MD) simulations gives quantitative insight in electric-field tuning rates of vibrational frequencies, electric field and fluctuation amplitudes, and molecular interaction geometries. Beyond neat water environments, the formation of contact ion pairs of phosphate groups with Mg2+ ions is demonstrated via frequency upshifts of the νAS(PO2)− vibration, resulting in a distinct vibrational band. The frequency positions of contact geometries are determined by an interplay of attractive electric and repulsive exchange interactions.
  • Item
    Ultrafast phosphate hydration dynamics in bulk H2O
    (Melville, NY : American Institute of Physics, 2015) Costard, Rene; Tyborski, Tobias; Fingerhut, Benjamin P.; Elsaesser, Thomas
    Phosphate vibrations serve as local probes of hydrogen bonding and structural fluctuations of hydration shells around ions. Interactions of H2PO4− ions and their aqueous environment are studied combining femtosecond 2D infrared spectroscopy, ab-initio calculations, and hybrid quantum-classical molecular dynamics (MD) simulations. Two-dimensional infrared spectra of the symmetric (𝜈𝑆(PO−2)) and asymmetric (𝜈𝐴𝑆(PO−2)) PO−2 stretching vibrations display nearly homogeneous lineshapes and pronounced anharmonic couplings between the two modes and with the δ(P-(OH)2) bending modes. The frequency-time correlation function derived from the 2D spectra consists of a predominant 50 fs decay and a weak constant component accounting for a residual inhomogeneous broadening. MD simulations show that the fluctuating electric field of the aqueous environment induces strong fluctuations of the 𝜈𝑆(PO−2) and 𝜈𝐴𝑆(PO−2) transition frequencies with larger frequency excursions for 𝜈𝐴𝑆(PO−2). The calculated frequency-time correlation function is in good agreement with the experiment. The 𝜈(PO−2) frequencies are mainly determined by polarization contributions induced by electrostatic phosphate-water interactions. H2PO4−/H2O cluster calculations reveal substantial frequency shifts and mode mixing with increasing hydration. Predicted phosphate-water hydrogen bond (HB) lifetimes have values on the order of 10 ps, substantially longer than water-water HB lifetimes. The ultrafast phosphate-water interactions observed here are in marked contrast to hydration dynamics of phospholipids where a quasi-static inhomogeneous broadening of phosphate vibrations suggests minor structural fluctuations of interfacial water.
  • Item
    Magnesium Contact Ions Stabilize the Tertiary Structure of Transfer RNA: Electrostatics Mapped by Two-Dimensional Infrared Spectra and Theoretical Simulations
    (Washington, DC : Soc., 2021) Schauss, Jakob; Kundu, Achintya; Fingerhut, Benjamin P.; Elsaesser, Thomas
    Ions interacting with hydrated RNA play a central role in defining its secondary and tertiary structure. While spatial arrangements of ions, water molecules, and phosphate groups have been inferred from X-ray studies, the role of electrostatic and other noncovalent interactions in stabilizing compact folded RNA structures is not fully understood at the molecular level. Here, we demonstrate that contact ion pairs of magnesium (Mg2+) and phosphate groups embedded in local water shells stabilize the tertiary equilibrium structure of transfer RNA (tRNA). Employing dialyzed tRNAPhe from yeast and tRNA from Escherichia coli, we follow the population of Mg2+ sites close to phosphate groups of the ribose-phosphodiester backbone step by step, combining linear and nonlinear infrared spectroscopy of phosphate vibrations with molecular dynamics simulations and ab initio vibrational frequency calculations. The formation of up to six Mg2+/phosphate contact pairs per tRNA and local field-induced reorientations of water molecules balance the phosphate-phosphate repulsion in nonhelical parts of tRNA, thus stabilizing the folded structure electrostatically. Such geometries display limited sub-picosecond fluctuations in the arrangement of water molecules and ion residence times longer than 1 µs. At higher Mg2+ excess, the number of contact ion pairs per tRNA saturates around 6 and weakly interacting ions prevail. Our results suggest a predominance of contact ion pairs over long-range coupling of the ion atmosphere and the biomolecule in defining and stabilizing the tertiary structure of tRNA. © 2020 American Chemical Society.