Search Results

Now showing 1 - 1 of 1
  • Item
    Infrared and NMR Spectroscopic Fingerprints of the Asymmetric H7 + O3 Complex in Solution
    (Weinheim : Wiley-VCH Verl., 2021) Kozari, Eve; Sigalov, Mark; Pines, Dina; Fingerhut, Benjamin P.; Pines, Ehud
    Infrared (IR) absorption in the 1000-3700 cm-1 range and 1 H NMR spectroscopy reveal the existence of an asymmetric protonated water trimer, H7 + O3, in acetonitrile. The core H7 + O3 motif persists in larger protonated water clusters in acetonitrile up to at least 8 water molecules. Quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations reveal irreversible proton transport promoted by propagating the asymmetric H7 + O3 structure in solution. The QM/MM calculations allow for the successful simulation of the measured IR absorption spectra of H7 + O3 in the OH stretch region, which reaffirms the assignment of the H7 + O3 spectra to a hybrid-complex structure: a protonated water dimer strongly hydrogen-bonded to a third water molecule with the proton exchanging between the two possible shared-proton Zundel-like centers. The H7 + O3 structure lends itself to promoting irreversible proton transport in presence of even one additional water molecule. We demonstrate how continuously evolving H7 + O3 structures may support proton transport within larger water solvates.