Search Results

Now showing 1 - 6 of 6
  • Item
    Drift–diffusion simulation of S-shaped current–voltage relations for organic semiconductor devices
    (Dordrecht : Springer Science + Business Media B.V., 2020) Doan, Duy Hai; Fischer, Axel; Fuhrmann, Jürgen; Glitzky, Annegret; Liero, Matthias
    We present an electrothermal drift–diffusion model for organic semiconductor devices with Gauss–Fermi statistics and positive temperature feedback for the charge carrier mobilities. We apply temperature-dependent Ohmic contact boundary conditions for the electrostatic potential and discretize the system by a finite volume based generalized Scharfetter–Gummel scheme. Using path-following techniques, we demonstrate that the model exhibits S-shaped current–voltage curves with regions of negative differential resistance, which were only recently observed experimentally. © 2020, The Author(s).
  • Item
    Introducing pinMOS Memory: A Novel, Nonvolatile Organic Memory Device
    (Weinheim : Wiley-VCH, 2020) Zheng, Yichu; Fischer, Axel; Sawatzki, Michael; Doan, Duy Hai; Liero, Matthias; Glitzky, Annegret; Reineke, Sebastian; Mannsfeld, Stefan C.B.
    In recent decades, organic memory devices have been researched intensely and they can, among other application scenarios, play an important role in the vision of an internet of things. Most studies concentrate on storing charges in electronic traps or nanoparticles while memory types where the information is stored in the local charge up of an integrated capacitance and presented by capacitance received far less attention. Here, a new type of programmable organic capacitive memory called p-i-n-metal-oxide-semiconductor (pinMOS) memory is demonstrated with the possibility to store multiple states. Another attractive property is that this simple, diode-based pinMOS memory can be written as well as read electrically and optically. The pinMOS memory device shows excellent repeatability, an endurance of more than 104 write-read-erase-read cycles, and currently already over 24 h retention time. The working mechanism of the pinMOS memory under dynamic and steady-state operations is investigated to identify further optimization steps. The results reveal that the pinMOS memory principle is promising as a reliable capacitive memory device for future applications in electronic and photonic circuits like in neuromorphic computing or visual memory systems. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Electrothermal Tristability Causes Sudden Burn-In Phenomena in Organic LEDs
    (Weinheim : Wiley-VCH, 2021) Kirch, Anton; Fischer, Axel; Liero, Matthias; Fuhrmann, Jürgen; Glitzky, Annegret; Reineke, Sebastian
    Organic light-emitting diodes (OLEDs) have been established as a mature display pixel technology. While introducing the same technology in a large-area form factor to general lighting and signage applications, some key questions remain unanswered. Under high-brightness conditions, OLED panels were reported to exhibit nonlinear electrothermal behavior causing lateral brightness inhomogeneities and even regions of switched-back luminance. Also, the physical understanding of sudden device failure and burn-ins is still rudimentary. A safe and stable operation of lighting tiles, therefore, requires an in-depth understanding of these physical phenomena. Here, it is shown that the electrothermal treatment of thin-film devices allows grasping the underlying physics. Configurations of OLEDs with different lateral dimensions are studied as a role model and it is reported that devices exceeding a certain panel size develop three stable, self heating-induced operating branches. Switching between them causes the sudden formation of dark spots in devices without any preexisting inhomogeneities. A current-stabilized operation mode is commonly used in the lighting industry, as it ensures degradation-induced voltage adjustments. Here, it is demonstrated that a tristable operation always leads to destructive switching, independent of applying constant currents or voltages. With this new understanding of the effects at high operation brightness, it will be possible to adjust driving schemes accordingly, design more resilient system integrations, and develop additional failure mitigation strategies. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH
  • Item
    Drift-diffusion simulation of S-shaped current-voltage relations for organic semiconductor devices
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Doan, Duy Hai; Fischer, Axel; Fuhrmann, Jürgen; Glitzky, Annegret; Liero, Matthias
    We present an electrothermal drift-diffusion model for organic semiconductor devices with Gauss-Fermi statistics and positive temperature feedback for the charge carrier mobilities. We apply temperature dependent Ohmic contact boundary conditions for the electrostatic potential and discretize the system by a finite volume based generalized Scharfetter-Gummel scheme. Using path-following techniques we demonstrate that the model exhibits S-shaped current-voltage curves with regions of negative differential resistance, which were only recently observed experimentally.
  • Item
    3D electrothermal simulations of organic LEDs showing negative differential resistance
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Liero, Matthias; Fuhrmann, Jürgen; Glitzky, Annegret; Koprucki, Thomas; Fischer, Axel; Reineke, Sebastian
    Organic semiconductor devices show a pronounced interplay between temperature-activated conductivity and self-heating which in particular causes inhomogeneities in the brightness of large-area OLEDs at high power. We consider a 3D thermistor model based on partial differential equations for the electrothermal behavior of organic devices and introduce an extension to multiple layers with nonlinear conductivity laws, which also take the diode-like behavior in recombination zones into account. We present a numerical simulation study for a red OLED using a finite-volume approximation of this model. The appearance of S-shaped current-voltage characteristics with regions of negative differential resistance in a measured device can be quantitatively reproduced. Furthermore, this simulation study reveals a propagation of spatial zones of negative differential resistance in the electron and hole transport layers toward the contact.
  • Item
    p-Laplace thermistor modeling of electrothermal feedback in organic semiconductors
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Liero, Matthias; Koprucki, Thomas; Fischer, Axel; Scholz, Reinhard; Glitzky, Annegret
    In large-area Organic Light-Emitting Diodes (OLEDs) spatially inhomogeneous luminance at high power due to inhomogeneous current flow and electrothermal feedback can be observed. To describe these self-heating effects in organic semiconductors we present a stationary thermistor model based on the heat equation for the temperature coupled to a p-Laplace-type equation for the electrostatic potential with mixed boundary conditions. The p-Laplacian describes the non-Ohmic electrical behavior of the organic material. Moreover, an Arrhenius-like temperature dependency of the electrical conductivity is considered. We introduce a finite-volume scheme for the system and discuss its relation to recent network models for OLEDs. In two spatial dimensions we derive a priori estimates for the temperature and the electrostatic potential and prove the existence of a weak solution by Schauder's fixed point theorem.