Search Results

Now showing 1 - 3 of 3
  • Item
    Electrothermal Tristability Causes Sudden Burn-In Phenomena in Organic LEDs
    (Weinheim : Wiley-VCH, 2021) Kirch, Anton; Fischer, Axel; Liero, Matthias; Fuhrmann, Jürgen; Glitzky, Annegret; Reineke, Sebastian
    Organic light-emitting diodes (OLEDs) have been established as a mature display pixel technology. While introducing the same technology in a large-area form factor to general lighting and signage applications, some key questions remain unanswered. Under high-brightness conditions, OLED panels were reported to exhibit nonlinear electrothermal behavior causing lateral brightness inhomogeneities and even regions of switched-back luminance. Also, the physical understanding of sudden device failure and burn-ins is still rudimentary. A safe and stable operation of lighting tiles, therefore, requires an in-depth understanding of these physical phenomena. Here, it is shown that the electrothermal treatment of thin-film devices allows grasping the underlying physics. Configurations of OLEDs with different lateral dimensions are studied as a role model and it is reported that devices exceeding a certain panel size develop three stable, self heating-induced operating branches. Switching between them causes the sudden formation of dark spots in devices without any preexisting inhomogeneities. A current-stabilized operation mode is commonly used in the lighting industry, as it ensures degradation-induced voltage adjustments. Here, it is demonstrated that a tristable operation always leads to destructive switching, independent of applying constant currents or voltages. With this new understanding of the effects at high operation brightness, it will be possible to adjust driving schemes accordingly, design more resilient system integrations, and develop additional failure mitigation strategies. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH
  • Item
    Feel the heat: Nonlinear electrothermal feedback in organic LEDs
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Fischer, Axel; Koprucki, Thomas; Gärtner, Klaus; Tietze, Max L.; Brückner, Jacqueline; Lüssem, Björn; Leo, Karl; Glitzky, Annegret; Scholz, Reinhard
    For lighting applications, Organic light-emitting diodes (OLED) need much higher brightness than for displays, leading to self-heating. Due to the temperature-activated transport in organic semiconductors, this can result in brightness inhomogeneities and catastrophic failure. Here, we show that due to the strong electrothermal feedback of OLEDs, the common spatial current and voltage distribution is completely changed, requiring advanced device modeling and operation concepts. Our study clearly demonstrates the effect of negative differential resistance (NDR) in OLEDs induced by self-heating. As a consequence, for increasing voltage, regions with declining voltages are propagating through the device, and even more interestingly, a part of these regions show even decreasing currents, leading to strong local variation in luminance. The expected breakthrough of OLED lighting technology will require an improved price performance ratio, and the realization of modules with very high brightness but untainted appearance is considered to be an essential step into this direction. Thus, a deeper understanding of the control of electrothermal feedback will help to make OLEDs in lighting more competitive.
  • Item
    Self-heating, bistability, and thermal switching in organic semiconductors
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2012) Fischer, Axel; Pahner, Paul; Lüssem, Björn; Scholz, Reinhard; Koprucki, Thomas; Gärtner, Klaus; Glitzky, Annegret
    We demonstrate electric bistability induced by the positive feedback of self-heating onto the thermally activated conductivity in a two-terminal device based on the organic semiconductor C60. The central undoped layer with a thickness of 200 nm is embedded between thinner n-doped layers adjacent to the contacts minimizing injection barriers. The observed current-voltage characteristics follow the general theory for thermistors described by an Arrhenius-like conductivity law. Our findings including hysteresis phenomena are of general relevance for the entire material class since most organic semiconductors can be described by a thermally activated conductivity.