Search Results

Now showing 1 - 2 of 2
  • Item
    Cross-Hemisphere Study Reveals Geographically Ubiquitous, Plastic-Specific Bacteria Emerging from the Rare and Unexplored Biosphere
    (Washington, DC : American Society for Microbiology, 2021) Scales, Brittan S.; Cable, Rachel N.; Duhaime, Melissa B.; Gerdts, Gunnar; Fischer, Franziska; Fischer, Dieter; Mothes, Stephanie; Hintzki, Lisa; Moldaenke, Lynn; Ruwe, Matthias; Kalinowski, Jörn; Kreikemeyer, Bernd; Pedrotti, Maria-Luiza; Gorsky, Gaby; Elineau, Amanda; Labrenz, Matthias; Oberbeckmann, Sonja; Campbell, Barbara J.
    While it is now appreciated that the millions of tons of plastic pollution travelling through marine systems carry complex communities of microorganisms, it is still unknown to what extent these biofilm communities are specific to the plastic or selected by the surrounding ecosystem. To address this, we characterized and compared the microbial communities of microplastic particles, nonplastic (natural and wax) particles, and the surrounding waters from three marine ecosystems (the Baltic, Sargasso and Mediterranean seas) using high-throughput 16S rRNA gene sequencing. We found that biofilm communities on microplastic and nonplastic particles were highly similar to one another across this broad geographical range. The similar temperature and salinity profiles of the Sargasso and Mediterranean seas, compared to the Baltic Sea, were reflected in the biofilm communities. We identified plastic-specific operational taxonomic units (OTUs) that were not detected on nonplastic particles or in the surrounding waters. Twenty-six of the plastic-specific OTUs were geographically ubiquitous across all sampled locations. These geographically ubiquitous plastic-specific OTUs were mostly low-abundance members of their biofilm communities and often represented uncultured members of marine ecosystems. These results demonstrate the potential for plastics to be a reservoir of rare and understudied microbes, thus warranting further investigations into the dynamics and role of these microbes in marine ecosystems.
  • Item
    Comparison and uncertainty evaluation of two centrifugal separators for microplastic sampling
    (New York, NY [u.a.] : Science Direct, 2021) Hildebrandt, Lars; Zimmermann, Tristan; Primpke, Sebastian; Fischer, Dieter; Gerdts, Gunnar; Pröfrock, Daniel
    For commonly applied microplastic sampling approaches based on filtration, high throughput and no size-discrimination are conflicting goals. Therefore, we propose two efficient centrifugal separators for small microplastic sampling, namely the utilization of a hydrocyclone as well as a continuous flow centrifuge. Thorough method optimization was followed by application in an extensive sampling study to investigate the separators' retention behavior for particulate plastics from estuarine waters. Microplastic concentrations ranged from 193 to 2072 particles m-3. The most dominant identified polymer types were polypropylene, acrylates, polyvinyl chloride and polyethylene. More than 95% of particles were < 100 µm. For the first time in microplastic research, an expanded uncertainty was calculated according to the "Guide to the expression of Uncertainty in Measurement" (JCGM 100:2008). Bottom-up uncertainty evaluation revealed the different sampling methods (~ 44%), sample replicates (~ 26%) and the different detection techniques (~ 16%) as the major sources of uncertainty. Depending on the number of particles detected in the samples, the relative expanded uncertainty (Urel (k = 2)) ranged from 24% up to > 200% underpinning tremendous importance of sound uncertainty evaluation. Our results indicate that scientist should rethink many "observed patterns" in the literature due to being insignificant and herewith not real.