Search Results

Now showing 1 - 5 of 5
Loading...
Thumbnail Image
Item

General overview: European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) – integrating aerosol research from nano to global scales

2011, Kulmala, M., Asmi, A., Lappalainen, H.K., Carslaw, K.S., Pöschl, U., Baltensperger, U., Hov, Ø., Brenquier, J.-L., Pandis, S.N., Facchini, M.C., Hansson, H.-C., Wiedensohler, A., O'Dowd, C.D., Boers, R., Boucher, O., de Leeuw, G., Denier van der Gon, H.A.C., Feichter, J., Krejci, R., Laj, P., Lihavainen, H., Lohmann, U., McFiggans, G., Mentel, T., Pilinis, C., Riipinen, I., Schulz, M., Stohl, A., Swietlicki, E., Vignati, E., Alves, C., Amann, M., Ammann, M., Arabas, S., Artaxo, P., Baars, H., Beddows, D.C.S., Bergström, R., Beukes, J.P., Bilde, M., Burkhart, J.F., Canonaco, F., Clegg, S.L., Coe, H., Crumeyrolle, S., D'Anna, B., Decesari, S., Gilardoni, S., Fischer, M., Fjaeraa, A.M., Fountoukis, C., George, C., Gomes, L., Halloran, P., Hamburger, T., Harrison, R.M., Herrmann, H., Hoffmann, T., Hoose, C., Hu, M., Hyvärinen, A., Hõrrak, U., Iinuma, Y., Iversen, T., Josipovic, M., Kanakidou, M., Kiendler-Scharr, A., Kirkevåg, A., Kiss, G., Klimont, Z., Kolmonen, P., Komppula, M., Kristjánsson, J.-E., Laakso, L., Laaksonen, A., Labonnote, L., Lanz, V.A., Lehtinen, K.E.J., Rizzo, L.V., Makkonen, R., Manninen, H.E., McMeeking, G., Merikanto, J., Minikin, A., Mirme, S., Morgan, W.T., Nemitz, E., O'Donnell, D., Panwar, T.S., Pawlowska, H., Petzold, A., Pienaar, J.J., Pio, C., Plass-Duelmer, C., Prévôt, A.S.H., Pryor, S., Reddington, C.L., Roberts, G., Rosenfeld, D., Schwarz, J., Seland, Ø., Sellegri, K., Shen, X.J., Shiraiwa, M., Siebert, H., Sierau, B., Simpson, D., Sun, J.Y., Topping, D., Tunved, P., Vaattovaara, P., Vakkari, V., Veefkind, J.P., Visschedijk, A., Vuollekoski, H., Vuolo, R., Wehner, B., Wildt, J., Woodward, S., Worsnop, D.R., van Zadelhoff, G.-J., Zardini, A.A., Zhang, K., van Zyl, P.G., Kerminen, V.-M.

In this paper we describe and summarize the main achievements of the European Aerosol Cloud Climate and Air Quality Interactions project (EUCAARI). EUCAARI started on 1 January 2007 and ended on 31 December 2010 leaving a rich legacy including: (a) a comprehensive database with a year of observations of the physical, chemical and optical properties of aerosol particles over Europe, (b) comprehensive aerosol measurements in four developing countries, (c) a database of airborne measurements of aerosols and clouds over Europe during May 2008, (d) comprehensive modeling tools to study aerosol processes fron nano to global scale and their effects on climate and air quality. In addition a new Pan-European aerosol emissions inventory was developed and evaluated, a new cluster spectrometer was built and tested in the field and several new aerosol parameterizations and computations modules for chemical transport and global climate models were developed and evaluated. These achievements and related studies have substantially improved our understanding and reduced the uncertainties of aerosol radiative forcing and air quality-climate interactions. The EUCAARI results can be utilized in European and global environmental policy to assess the aerosol impacts and the corresponding abatement strategies.

Loading...
Thumbnail Image
Item

Are we using the right fuel to drive hydrological models? A climate impact study in the Upper Blue Nile

2018, Liersch, S., Tecklenburg, J., Rust, H., Dobler, A., Fischer, M., Kruschke, T., Koch, H., Hattermann, F.F.

Climate simulations are the fuel to drive hydrological models that are used to assess the impacts of climate change and variability on hydrological parameters, such as river discharges, soil moisture, and evapotranspiration. Unlike with cars, where we know which fuel the engine requires, we never know in advance what unexpected side effects might be caused by the fuel we feed our models with. Sometimes we increase the fuel's octane number (bias correction) to achieve better performance and find out that the model behaves differently but not always as was expected or desired. This study investigates the impacts of projected climate change on the hydrology of the Upper Blue Nile catchment using two model ensembles consisting of five global CMIP5 Earth system models and 10 regional climate models (CORDEX Africa). WATCH forcing data were used to calibrate an eco-hydrological model and to bias-correct both model ensembles using slightly differing approaches. On the one hand it was found that the bias correction methods considerably improved the performance of average rainfall characteristics in the reference period (1970-1999) in most of the cases. This also holds true for non-extreme discharge conditions between Q20 and Q80. On the other hand, bias-corrected simulations tend to overemphasize magnitudes of projected change signals and extremes. A general weakness of both uncorrected and bias-corrected simulations is the rather poor representation of high and low flows and their extremes, which were often deteriorated by bias correction. This inaccuracy is a crucial deficiency for regional impact studies dealing with water management issues and it is therefore important to analyse model performance and characteristics and the effect of bias correction, and eventually to exclude some climate models from the ensemble. However, the multi-model means of all ensembles project increasing average annual discharges in the Upper Blue Nile catchment and a shift in seasonal patterns, with decreasing discharges in June and July and increasing discharges from August to November.

Loading...
Thumbnail Image
Item

Bio-responsive polymer hydrogels homeostatically regulate blood coagulation

2013, Maitz, Manfred F., Freudenberg, U., Tsurkan, M.V., Fischer, M., Beyrich, T., Werner, C.

Bio-responsive polymer architectures can empower medical therapies by engaging molecular feedback-response mechanisms resembling the homeostatic adaptation of living tissues to varying environmental constraints. Here we show that a blood coagulation-responsive hydrogel system can deliver heparin in amounts triggered by the environmental levels of thrombin, the key enzyme of the coagulation cascade, which - in turn - becomes inactivated due to released heparin. The bio-responsive hydrogel quantitatively quenches blood coagulation over several hours in the presence of pro-coagulant stimuli and during repeated incubation with fresh, non-anticoagulated blood. These features enable the introduced material to provide sustainable, autoregulated anticoagulation, addressing a key challenge of many medical therapies. Beyond that, the explored concept may facilitate the development of materials that allow the effective and controlled application of drugs and biomolecules.

Loading...
Thumbnail Image
Item

Graphite modified epoxy-based adhesive for joining of aluminium and PP/graphite composites

2020, Rzeczkowski, P., Pötschke, Petra, Fischer, M., Kühnert, I., Krause, Beate

A graphite-modified adhesive was developed in order to simultaneously enhance the thermal conductivity and the strength of an adhesive joint. The thermal conductivity through the joint was investigated by using highly filled PP/graphite composite substrates, which were joined with an epoxy adhesive of different layer thicknesses. Similar measurements were carried out with a constant adhesive layer thickness, whilst applying an epoxy adhesive modified with expanded graphite (EG) (6, 10, and 20 wt%). By reducing the adhesive layer thickness or modifying the adhesive with conductive fillers, a significant increase of the thermal conductivity through the joint was achieved. The examination of the mechanical properties of the modified adhesives was carried out by tensile tests (adhesive only), lap-shear tests, and fracture energy tests (mode 1) with aluminium substrates. Modification of the adhesive with EG led to an increase of the tensile lap-shear strength and the adhesive fracture energy (mode 1) of the joint. In addition, burst pressure tests were performed to determine the strength of the joint in a complex component. The strength of the joint increased with the graphite content in the PP substrate and in the epoxy adhesive.

Loading...
Thumbnail Image
Item

Cascading Hazards in the Aftermath of Australia's 2019/2020 Black Summer Wildfires

2021, Kemter, M., Fischer, M., Luna, L.V., Schönfeldt, E., Vogel, J., Banerjee, A., Korup, O., Thonicke, K.

Following an unprecedented drought, Australia's 2019/2020 “Black Summer” fire season caused severe damage, gravely impacting both humans and ecosystems, and increasing susceptibility to other hazards. Heavy precipitation in early 2020 led to flooding and runoff that entrained ash and soil in burned areas, increasing sediment concentration in rivers, and reducing water quality. We exemplify this hazard cascade in a catchment in New South Wales by mapping burn severity, flood, and rainfall recurrence; estimating changes in soil erosion; and comparing them with river turbidity data. We show that following the extreme drought and wildfires, even moderate rain and floods led to undue increases in soil erosion and reductions in water quality. While natural risk analysis and planning commonly focuses on a single hazard, we emphasize the need to consider the entire hazard cascade, and highlight the impacts of ongoing climate change beyond its direct effect on wildfires.