Search Results

Now showing 1 - 2 of 2
  • Item
    An environment for sustainable research software in Germany and beyond: current state, open challenges, and call for action
    (London : F1000 Research Ltd, 2021) Anzt, Hartwig; Bach, Felix; Druskat, Stephan; Löffler, Frank; Loewe, Axel; Renard, Bernhard Y.; Seemann, Gunnar; Struck, Alexander; Achhammer, Elke; Aggarwal, Piush; Appel, Franziska; Bader, Michael; Brusch, Lutz; Busse, Christian; Chourdakis, Gerasimos; Dabrowski, Piotr Wojciech; Ebert, Peter; Flemisch, Bernd; Friedl, Sven; Fritzsch, Bernadette; Funk, Maximilian D.; Gast, Volker; Goth, Florian; Grad, Jean-Noël; Hegewald, Jan; Hermann, Sibylle; Hohmann, Florian; Janosch, Stephan; Kutra, Dominik; Linxweiler, Jan; Muth, Thilo; Peters-Kottig, Wolfgang; Rack, Fabian; Raters, Fabian H. C.; Rave, Stephan; Reina, Guido; Reißig, Malte; Ropinski, Timo; Schaarschmidt, Joerg; Seibold, Heidi; Thiele, Jan P.; Uekermann, Benjamin; Unger, Stefan; Weeber, Rudolf
    Research software has become a central asset in academic research. It optimizes existing and enables new research methods, implements and embeds research knowledge, and constitutes an essential research product in itself. Research software must be sustainable in order to understand, replicate, reproduce, and build upon existing research or conduct new research effectively. In other words, software must be available, discoverable, usable, and adaptable to new needs, both now and in the future. Research software therefore requires an environment that supports sustainability. Hence, a change is needed in the way research software development and maintenance are currently motivated, incentivized, funded, structurally and infrastructurally supported, and legally treated. Failing to do so will threaten the quality and validity of research. In this paper, we identify challenges for research software sustainability in Germany and beyond, in terms of motivation, selection, research software engineering personnel, funding, infrastructure, and legal aspects. Besides researchers, we specifically address political and academic decision-makers to increase awareness of the importance and needs of sustainable research software practices. In particular, we recommend strategies and measures to create an environment for sustainable research software, with the ultimate goal to ensure that software-driven research is valid, reproducible and sustainable, and that software is recognized as a first class citizen in research. This paper is the outcome of two workshops run in Germany in 2019, at deRSE19 - the first International Conference of Research Software Engineers in Germany - and a dedicated DFG-supported follow-up workshop in Berlin.
  • Item
    NFDI4Ing - the National Research Data Infrastructure for Engineering Sciences
    (Meyrin : CERN, 2020-09-25) Schmitt, Robert H.; Anthofer, Verena; Auer, Sören; Başkaya, Sait; Bischof, Christian; Bronger, Torsten; Claus, Florian; Cordes, Florian; Demandt, Évariste; Eifert, Thomas; Flemisch, Bernd; Fuchs, Matthias; Fuhrmans, Marc; Gerike, Regine; Gerstner, Eva-Maria; Hanke, Vanessa; Heine, Ina; Huebser, Louis; Iglezakis, Dorothea; Jagusch, Gerald; Klinger, Axel; Krafczyk, Manfred; Kraft, Angelina; Kuckertz, Patrick; Küsters, Ulrike; Lachmayer, Roland; Langenbach, Christian; Mozgova, Iryna; Müller, Matthias S.; Nestler, Britta; Pelz, Peter; Politze, Marius; Preuß, Nils; Przybylski-Freund, Marie-Dominique; Rißler-Pipka, Nanette; Robinius, Martin; Schachtner, Joachim; Schlenz, Hartmut; Schwarz, Annett; Schwibs, Jürgen; Selzer, Michael; Sens, Irina; Stäcker, Thomas; Stemmer, Christian; Stille, Wolfgang; Stolten, Detlef; Stotzka, Rainer; Streit, Achim; Strötgen, Robert; Wang, Wei Min
    NFDI4Ing brings together the engineering communities and fosters the management of engineering research data. The consortium represents engineers from all walks of the profession. It offers a unique method-oriented and user-centred approach in order to make engineering research data FAIR – findable, accessible, interoperable, and re-usable. NFDI4Ing has been founded in 2017. The consortium has actively engaged engineers across all five engineering research areas of the DFG classification. Leading figures have teamed up with experienced infrastructure providers. As one important step, NFDI4Ing has taken on the task of structuring the wealth of concrete needs in research data management. A broad consensus on typical methods and workflows in engineering research has been established: The archetypes. So far, seven archetypes are harmonising the methodological needs: Alex: bespoke experiments with high variability of setups, Betty: engineering research software, Caden: provenance tracking of physical samples & data samples, Doris: high performance measurement & computation, Ellen: extensive and heterogeneous data requirements, Frank: many participants & simultaneous devices, Golo: field data & distributed systems. A survey of the entire engineering research landscape in Germany confirms that the concept of engineering archetypes has been very well received. 95% of the research groups identify themselves with at least one of the NFDI4Ing archetypes. NFDI4Ing plans to further coordinate its engagement along the gateways provided by the DFG classification of engineering research areas. Consequently, NFDI4Ing will support five community clusters. In addition, an overarching task area will provide seven base services to be accessed by both the community clusters and the archetype task areas. Base services address quality assurance & metrics, research software development, terminologies & metadata, repositories & storage, data security & sovereignty, training, and data & knowledge discovery. With the archetype approach, NFDI4Ing’s work programme is modular and distinctly method-oriented. With the community clusters and base services, NFDI4Ing’s work programme remains firmly user-centred and highly integrated. NFDI4Ing has set in place an internal organisational structure that ensures viability, operational efficiency, and openness to new partners during the course of the consortium’s development. NFDI4Ing’s management team brings in the experience from two applicant institutions and from two years of actively engaging with the engineering communities. Eleven applicant institutions and over fifty participants have committed to carrying out NFDI4Ing’s work programme. Moreover, NFDI4Ing’s connectedness with consortia from nearby disciplinary fields is strong. Collaboration on cross-cutting topics is well prepared and foreseen. As a result, NFDI4Ing is ready to join the National Research Data Infrastructure.