Search Results

Now showing 1 - 2 of 2
  • Item
    Plasma-based VAD process for multiply doped glass powders and high-performance fiber preforms with outstanding homogeneity
    (Hoboken, NJ : Wiley Interscience, 2020) Trautvetter, Tom; Schäfer, Jan; Benzine, Omar; Methling, Ralf; Baierl, Hardy; Reichel, Volker; Dellith, Jan; Köpp, Daniel; Hempel, Frank; Stankov, Marjan; Baeva, Margarita; Foest, Rüdiger; Wondraczek, Lothar; Wondraczek, Katrin; Bartelt, Hartmut
    An innovative approach using the vapor axial deposition (VAD), for the preparation of silica-based high-power fiber laser preforms, is described in this study. The VAD uses a plasma deposition system operating at atmospheric pressure, fed by a single, chemically adapted solution containing precursors of laser-active dopants (e.g., Yb2O3), glass-modifier species (e.g., Al2O3), and the silica matrix. The approach enables simultaneous doping with multiple optically active species and overcomes some of the current technological limitations encountered with well-established fiber preform technologies in terms of dopant distribution, doping levels, and achievable active core diameter. The deposition of co-doped silica with outstanding homogeneity is proven by Raman spectroscopy and electron probe microanalysis. Yb2O3 concentrations are realized up to 0.3 mol% in SiO2, with simultaneous doping of 3 mol% of Al2O3.
  • Item
    Plasma Spraying of Kaolinite for Preparing Reactive Alumino-Silicate Glass Coatings
    (Weinheim : Wiley-VCH, 2022) Warr, Laurence N.; Wolff, Thorben; Testrich, Holger; Grathoff, Georg; Kruth, Angela; Foest, Rüdiger
    Thermally treated kaolinite is used to develop a range of alumino-silicate-based precursor materials but its behavior during plasma spraying has not been well-researched. In this study, two types of kaolinite samples were investigated in the form of low defect (KGa-1b) and high defect (KGa-2) varieties. The extreme temperatures of the plasma stream (up to 20 000 K) induced flash melting to produce a highly porous alumino-silicate glass without any crystallization of new Al−Si oxide minerals. The glass is comprised largely of intact or deformed spheres (average diameters 1.14–1.44 μm), which indicates rapid quenching and solidification before impact. The subspherical structures contain up to 40 % closed pore space caused by the rapid escape of water during melting. The low-density, porous alumino-silicate glass coatings with predicted specific surface areas (>0.95 m2/g) and hardnesses >1.8 GPa represent a potentially reactive but physically stable substrate ideal for further chemical functionalization.