Search Results

Now showing 1 - 4 of 4
  • Item
    On the interaction of a microwave excited oxygen plasma with a jet of precursor material for deposition applications
    (Praha : Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Physics, 2019) Methling, R.; Hempel, F.; Baeva, M.; Trautvetter, T.; Baierl, H.; Foest, R.
    A plasma source based on a microwave discharge at atmospheric pressure is used to produce an oxygen plasma torch. A liquid precursor material is evaporated and injected into the torch through a nozzle, causing oxidization and deposition of silica at a nearby quartz substrate. The temperature generated inside the plasma source and in the plume, in the region of treatment, and at the substrate surface are key parameters, which are needed for process description and optimization of plasma-chemical reactions. Optical emission spectroscopy and thermography were applied to observe and characterize the jet behavior and composition. The experimental results are compared with self-consistent modeling.
  • Item
    Modelling and experimental evidence of the cathode erosion in a plasma spray torch
    (Bristol : IOP Publ., 2022) Baeva, M.; Benilov, M.S.; Zhu, T.; Testrich, H.; Kewitz, T.; Foest, R.
    The lifetime of tungsten cathodes used in plasma spray torches is limited by processes leading to a loss of cathode material. It was reported in the literature that the mechanism of their erosion is the evaporation. A model of the ionization layer of a cathode is developed to study the diffusive transport of evaporated tungsten atoms and tungsten ions produced due to ionization by electron impact in a background argon plasma. It is shown that the Stefan-Maxwell equations do not reduce to Fick law as one could expect for the transport of diluted species, which is due to significant diffusion velocities of argon ions. The ionization of tungsten atoms occurs in a distance of a few micrometers from the cathode surface and leads to a strong sink, which increases the net flux of tungsten atoms far beyond that obtained in absence of tungsten ions. This shows that the tungsten ions are driven by the electric field towards the cathode resulting in no net diffusive flux and no removal of tungsten species from the ionization layer even if convection is accounted for. A possible mechanism of removal is found by extending the model to comprise an anode. The extended model resolves the inter-electrode region and provides the plasma parameters for a current density corresponding to the value at the center of the cathode under typical arc currents of 600 A and 800 A. The presence of the anode causes a reversal of the electric field on the anode side, which pulls the ions away from the ionization layer of the cathode. The net flux of tungsten ions can be further fortified by convection. This model allows one to evaluate the loss of cathode material under realistic operating conditions in a quantitative agreement with measured values.
  • Item
    Influence of dielectric thickness and electrode structure on the ion wind generation by micro fabricated plasma actuators
    (Bristol : IOP Publ., 2020) Hink, R.; Pipa, A.V.; Schäfer, J.; Caspari, R.; Weichwald, R.; Foest, R.; Brandenburg, R.
    Surface dielectric barrier discharges are investigated in order to explore the combined effects of barrier thickness and microstructure of the exposed electrode on the ion wind generation. Actuators with straight and structured high voltage electrodes with characteristic sizes of 200 and 250 µm and dielectric thicknesses of 0.5, 1 and 2 mm are compared. It is observed that: i) actuator efficiency of ion wind generation strongly depends on the applied voltage amplitude; ii) operation voltage depends on the dielectric thickness logarithmically; iii) electrode microstructure slightly increases the dynamic pressure (few percent in maximum), however the effect decreases with thicker dielectrics and smaller electrode structures; iv) the pattern of the most intensive discharge parts as well as the dielectric erosion repeats the regular structure of the electrodes down to 200 µm. Several identical samples are tested during different days to estimate the impact of the air humidity and the degradation of the dielectric. The microscale precision of the sample manufacture was accomplished by a commercial facility for printed circuit boards. © 2020 The Author(s). Published by IOP Publishing Ltd.
  • Item
    Preparation, analysis, and application of coated glass targets for the Wendelstein 7-X laser blow-off system
    (Melville, NY : American Inst. of Physics, 2020) Wegner, Th.; Geiger, B.; Foest, R.; Jansen van Vuuren, A.; Winters, V. R.; Biedermann, C.; Burhenn, R.; Buttenschön, B.; Cseh, G.; Joda, I.; Kocsis, G.; Kunkel, F.; Quade, A.; Schäfer, J.; Schmitz, O.; Szepesi, T.
    Coated glass targets are a key component of the Wendelstein 7-X laser blow-off system that is used for impurity transport studies. The preparation and analysis of these glass targets as well as their performance is examined in this paper. The glass targets have a high laser damage threshold and are coated via physical vapor deposition with μm thick films. In addition, nm-thin layers of Ti are used as an interface layer for improved ablation efficiency and reduced coating stress. Hence, the metallic or ceramic coating has a lateral homogeneity within 2% and contaminants less than 5%, being optimal for laser ablation processing. With this method, a short (few ms) and well defined pulse of impurities with about 1017 particles can be injected close to the last closed flux surface of Wendelstein 7-X. In particular, a significant amount of atoms with a velocity of about 1 km/s enters the plasma within 1 ms. The atoms are followed by a negligible concentration of slower clusters and macro-particles. This qualifies the use of the targets and applied laser settings for impurity transport studies with the laser blow-off system in Wendelstein 7-X. © 2020 Author(s).