Search Results

Now showing 1 - 2 of 2
  • Item
    Gratings for synchrotron and FEL beamlines: a project for the manufacture of ultra-precise gratings at Helmholtz Zentrum Berlin
    (Chester : IUCr, 2018) Siewert, F.; Löchel, B.; Buchheim, J.; Eggenstein, F.; Firsov, A.; Gwalt, G.; Kutz, O.; Lemke, St.; Nelles, B.; Rudolph, I.; Schäfers, F.; Seliger, T.; Senf, F.; Sokolov, A.; Waberski, Ch.; Wolf, J.; Zeschke, T.; Zizak, I.; Follath, R.; Arnold, T.; Frost, F.; Pietag, F.; Erko, A.
    Blazed gratings are of dedicated interest for the monochromatization of synchrotron radiation when a high photon flux is required, such as, for example, in resonant inelastic X-ray scattering experiments or when the use of laminar gratings is excluded due to too high flux densities and expected damage, for example at free-electron laser beamlines. Their availability became a bottleneck since the decommissioning of the grating manufacture facility at Carl Zeiss in Oberkochen. To resolve this situation a new technological laboratory was established at the Helmholtz Zentrum Berlin, including instrumentation from Carl Zeiss. Besides the upgraded ZEISS equipment, an advanced grating production line has been developed, including a new ultra-precise ruling machine, ion etching technology as well as laser interference lithography. While the old ZEISS ruling machine GTM-6 allows ruling for a grating length up to 170 mm, the new GTM-24 will have the capacity for 600 mm (24 inch) gratings with groove densities between 50 lines mm−1 and 1200 lines mm−1. A new ion etching machine with a scanning radiofrequency excited ion beam (HF) source allows gratings to be etched into substrates of up to 500 mm length. For a final at-wavelength characterization, a new reflectometer at a new Optics beamline at the BESSY-II storage ring is under operation. This paper reports on the status of the grating fabrication, the measured quality of fabricated items by ex situ and in situ metrology, and future development goals.
  • Item
    Fermi surface nesting in several transition metal dichalcogenides
    (Milton Park : Taylor & Francis, 2008) Inosov, D.S.; Zabolotnyy, V.B.; Evtushinsky, D.V.; Kordyuk, A.A.; Büchner, B.; Follath, R.; Berger, H.; Borisenko, S.V.
    By means of high-resolution angle-resolved photoelectron spectroscopy (ARPES), we have studied the fermiology of 2H transition metal dichalcogenide polytypes TaSe2, NbSe2 and Cu0.2NbS 2. The tight-binding model of the electronic structure, extracted from ARPES spectra for all three compounds, was used to calculate the Lindhard function (bare spin susceptibility), which reflects the propensity to charge density wave (CDW) instabilities observed in TaSe2 and NbSe 2. We show that though the Fermi surfaces of all three compounds possess an incommensurate nesting vector in the close vicinity of the CDW wave vector, the nesting and ordering wave vectors do not exactly coincide, and there is no direct relationship between the magnitude of the susceptibility at the nesting vector and the CDW transition temperature. The nesting vector persists across the incommensurate CDW transition in TaSe2 as a function of temperature despite the observable variations of the Fermi surface geometry in this temperature range. In Cu0.2NbS2, the nesting vector is present despite different doping levels, which leads us to expect a possible enhancement of the CDW instability with Cu intercalation in the Cu xNbS2 family of materials.