Search Results

Now showing 1 - 2 of 2
  • Item
    Steering of Vortices by Magnetic Field Tilting in Open Superconductor Nanotubes
    (Basel : MDPI, 2024) Bogush, Igor; Fomin, Vladimir M.; Dobrovolskiy, Oleksandr V.
    In planar superconductor thin films, the places of nucleation and arrangements of moving vortices are determined by structural defects. However, various applications of superconductors require reconfigurable steering of fluxons, which is hard to realize with geometrically predefined vortex pinning landscapes. Here, on the basis of the time-dependent Ginzburg–Landau equation, we present an approach for the steering of vortex chains and vortex jets in superconductor nanotubes containing a slit. The idea is based on the tilting of the magnetic field (Formula presented.) at an angle (Formula presented.) in the plane perpendicular to the axis of a nanotube carrying an azimuthal transport current. Namely, while at (Formula presented.), vortices move paraxially in opposite directions within each half-tube; an increase in (Formula presented.) displaces the areas with the close-to-maximum normal component (Formula presented.) to the close(opposite)-to-slit regions, giving rise to descending (ascending) branches in the induced-voltage frequency spectrum (Formula presented.). At lower B values, upon reaching the critical angle (Formula presented.), the close-to-slit vortex chains disappear, yielding (Formula presented.) of the (Formula presented.) type ((Formula presented.) : an integer; (Formula presented.) : the vortex nucleation frequency). At higher B values, (Formula presented.) is largely blurry because of multifurcations of vortex trajectories, leading to the coexistence of a vortex jet with two vortex chains at (Formula presented.). In addition to prospects for the tuning of GHz-frequency spectra and the steering of vortices as information bits, our findings lay the foundation for on-demand tuning of vortex arrangements in 3D superconductor membranes in tilted magnetic fields.
  • Item
    Switching Propulsion Mechanisms of Tubular Catalytic Micromotors
    (Weinheim : Wiley-VCH, 2021) Wrede, Paul; Medina-Sánchez, Mariana; Fomin, Vladimir M.; Schmidt, Oliver G.
    Different propulsion mechanisms have been suggested for describing the motion of a variety of chemical micromotors, which have attracted great attention in the last decades due to their high efficiency and thrust force, enabling several applications in the fields of environmental remediation and biomedicine. Bubble-recoil based motion, in particular, has been modeled by three different phenomena: capillary forces, bubble growth, and bubble expulsion. However, these models have been suggested independently based on a single influencing factor (i.e., viscosity), limiting the understanding of the overall micromotor performance. Therefore, the combined effect of medium viscosity, surface tension, and fuel concentration is analyzed on the micromotor swimming ability, and the dominant propulsion mechanisms that describe its motion more accurately are identified. Using statistically relevant experimental data, a holistic theoretical model is proposed for bubble-propelled tubular catalytic micromotors that includes all three above-mentioned phenomena and provides deeper insights into their propulsion physics toward optimized geometries and experimental conditions.