Search Results

Now showing 1 - 2 of 2
  • Item
    Podosome-Driven Defect Development in Lamellar Bone under the Conditions of Senile Osteoporosis Observed at the Nanometer Scale
    (Washington, DC : ACS Publications, 2021) Simon, Paul; Pompe, Wolfgang; Bobeth, Manfred; Worch, Hartmut; Kniep, RĂ¼diger; Formanek, Petr; Hild, Anne; Wenisch, Sabine; Sturm, Elena
    The degradation mechanism of human trabecular bone harvested from the central part of the femoral head of a patient with a fragility fracture of the femoral neck under conditions of senile osteoporosis was investigated by high-resolution electron microscopy. As evidenced by light microscopy, there is a disturbance of bone metabolism leading to severe and irreparable damages to the bone structure. These defects are evoked by osteoclasts and thus podosome activity. Podosomes create typical pit marks and holes of about 300-400 nm in diameter on the bone surface. Detailed analysis of the stress field caused by the podosomes in the extracellular bone matrix was performed. The calculations yielded maximum stress in the range of few megapascals resulting in formation of microcracks around the podosomes. Disintegration of hydroxyapatite and free lying collagen fibrils were observed at the edges of the plywood structure of the bone lamella. At the ultimate state, the disintegration of the mineralized collagen fibrils to a gelatinous matrix comes along with a delamination of the apatite nanoplatelets resulting in a brittle, porous bone structure. The nanoplatelets aggregate to big hydroxyapatite plates with a size of up to 10 x 20 μm2. The enhanced plate growth can be explained by the interaction of two mechanisms in the ruffled border zone: the accumulation of delaminated hydroxyapatite nanoplatelets near clusters of podosomes and the accelerated nucleation and random growth of HAP nanoplatelets due to a nonsufficient concentration of process-directing carboxylated osteocalcin cOC. © 2021 The Authors. Published by American Chemical Society.
  • Item
    Temperature-Dependent Reinforcement of Hydrophilic Rubber Using Ice Crystals
    (Washington, DC : ACS Publications, 2017-2-2) Natarajan, Tamil Selvan; Stöckelhuber, Klaus Werner; Malanin, Mikhail; Eichhorn, Klaus-Jochen; Formanek, Petr; Reuter, Uta; WieĂŸner, Sven; Heinrich, Gert; Das, Amit
    This is the first study on the impact of ice crystals on glass transition and mechanical behavior of soft cross-linked elastomers. A hydrophilic elastomer such as epichlorohydrin-ethylene oxide-allyl glycidyl ether can absorb about ∼40 wt % of water. The water-swollen cross-linked network exhibits elastic properties with more than 1500% stretchability at room temperature. Coincidently, the phase transition of water into solid ice crystals inside of the composites allows the reinforcement of the soft elastomer mechanically at lower temperatures. Young's modulus of the composites measured at -20 °C remarkably increased from 1.45 to 3.14 MPa, whereas at +20 °C, the effect was opposite and the Young's modulus decreased from 0.6 to 0.03 MPa after 20 days of water treatment. It was found that a part of the absorbed water, ∼74% of the total absorbed water, is freezable and occupies nearly 26 vol % of the composites. Simultaneously, these solid ice crystals are found to be acting as a reinforcing filler at lower temperatures. The size of these ice crystals is distributed in a relatively narrow range of 400-600 nm. The storage modulus (E′) of the ice crystal-filled composites increased from 3 to 13 MPa at -20 °C. The glass transition temperature (-37 °C) of the soft cross-linked elastomer was not altered by the absorption of water. However, a special transition (melting of ice) occurred at temperatures close to 0 °C as observed in the dynamic mechanical analysis of the water-swollen elastomers. The direct polymer/filler (ice crystals) interaction was demonstrated by strain sweep experiments and investigated using Fourier transform infrared spectroscopy. This type of cross-linked rubber could be integrated into a smart rubber application such as in adaptable mechanics, where the stiffness of the rubber can be altered as a function of temperature without affecting the mechanical stretchability either below or above 0 °C (above the glass temperature region) of the rubber.