Search Results

Now showing 1 - 2 of 2
  • Item
    A LOFAR observation of ionospheric scintillation from two simultaneous travelling ionospheric disturbances
    (Les Ulis : EDP Sciences, 2020) Fallows, Richard A.; Forte, Biagio; Astin, Ivan; Allbrook, Tom; Arnold, Alex; Wood, Alan; Dorrian, Gareth; Mevius, Maaijke; Rothkaeh, Hanna; Matyjasiak, Barbara; Krankowski, Andrzej; Anderson, James M.; Asgekar, Ashish; Avruch, I. Max; Bentum, Mark; Bisi, Mario M.; Butcher, Harvey R; Ciardi, Benedetta; Dabrowski, Bartosz; Damstra, Sieds; de Gasperin, Francesco; Duscha, Sven; Eislöffel, Jochen; Franzen, Thomas M.O.; Garrett, Michael A.; Griessmeier, Jean-Matthias; Gunst, Andre W.; Hoeft, Matthias; Horandel, Jorg R.; Iacobelli, Marco; Intema, Huib T.; Koopmans, Leon V.E.; Maat, Peter; Mann, Gottfried; Nelles, Anna; Paas, Harm; Pandey, Vishambhar N.; Reich, Wolfgang; Rowlinson, Antonia; Ruiter, Mark; Schwarz, Dominik J.; Serylak, Maciej; Shulevski, Aleksander; Smirnov, Oleg M.; Soida, Marian; Steinmetz, Matthias; Thoudam, Satyendra; Toribio, M. Carmen; van Ardenne, Arnold; van Bemmel, Ilse M.; van der Wiel, Matthijs H.D.; van Haarlem, Michiel P.; Vermeulen, Rene C.; Vocks, Christian; Wijers, Ralph A.M.J.; Wucknitz, Olaf; Zarka, Philippe; Zucca, Pietro
    This paper presents the results from one of the first observations of ionospheric scintillation taken using the Low-Frequency Array (LOFAR). The observation was of the strong natural radio source Cassiopeia A, taken overnight on 18–19 August 2013, and exhibited moderately strong scattering effects in dynamic spectra of intensity received across an observing bandwidth of 10–80 MHz. Delay-Doppler spectra (the 2-D FFT of the dynamic spectrum) from the first hour of observation showed two discrete parabolic arcs, one with a steep curvature and the other shallow, which can be used to provide estimates of the distance to, and velocity of, the scattering plasma. A cross-correlation analysis of data received by the dense array of stations in the LOFAR “core” reveals two different velocities in the scintillation pattern: a primary velocity of ~20–40 ms−1 with a north-west to south-east direction, associated with the steep parabolic arc and a scattering altitude in the F-region or higher, and a secondary velocity of ~110 ms−1 with a north-east to south-west direction, associated with the shallow arc and a scattering altitude in the D-region. Geomagnetic activity was low in the mid-latitudes at the time, but a weak sub-storm at high latitudes reached its peak at the start of the observation. An analysis of Global Navigation Satellite Systems (GNSS) and ionosonde data from the time reveals a larger-scale travelling ionospheric disturbance (TID), possibly the result of the high-latitude activity, travelling in the north-west to south-east direction, and, simultaneously, a smaller-scale TID travelling in a north-east to south-west direction, which could be associated with atmospheric gravity wave activity. The LOFAR observation shows scattering from both TIDs, at different altitudes and propagating in different directions. To the best of our knowledge this is the first time that such a phenomenon has been reported.
  • Item
    Interpretation of Radio Wave Scintillation Observed through LOFAR Radio Telescopes
    (London : Institute of Physics Publ., 2022) Forte, Biagio; Fallows, Richard A.; Bisi, Mario M.; Zhang, Jinge; Krankowski, Andrzej; Dabrowski, Bartosz; Rothkaehl, Hanna; Vocks, Christian
    Radio waves propagating through a medium containing irregularities in the spatial distribution of the electron density develop fluctuations in their intensities and phases. In the case of radio waves emitted from astronomical objects, they propagate through electron density irregularities in the interstellar medium, the interplanetary medium, and Earth’s ionosphere. The LOFAR radio telescope, with stations across Europe, can measure intensity across the VHF radio band and thus intensity scintillation on the signals received from compact astronomical objects. Modeling intensity scintillation allows the estimate of various parameters of the propagation medium, for example, its drift velocity and its turbulent power spectrum. However, these estimates are based on the assumptions of ergodicity of the observed intensity fluctuations and, typically, of weak scattering. A case study of single-station LOFAR observations of the strong astronomical source Cassiopeia A in the VHF range is utilized to illustrate deviations from ergodicity, as well as the presence of both weak and strong scattering. Here it is demonstrated how these aspects can lead to misleading estimates of the propagation medium properties, for example, in the solar wind. This analysis provides a method to model errors in these estimates, which can be used in the characterization of both the interplanetary medium and Earth’s ionosphere. Although the discussion is limited to the case of the interplanetary medium and Earth’s ionosphere, its ideas are also applicable to the case of the interstellar medium.