Search Results

Now showing 1 - 2 of 2
  • Item
    Plasma-Assisted Immobilization of a Phosphonium Salt and Its Use as a Catalyst in the Valorization of CO2
    (Weinheim : Wiley-VCH, 2020) Hu, Yuya; Peglow, Sandra; Longwitz, Lars; Frank, Marcus; Epping, Jan Dirk; Breser, Volker; Werner, Thomas
    The first plasma-assisted immobilization of an organocatalyst, namely a bifunctional phosphonium salt in an amorphous hydrogenated carbon coating, is reported. This method makes the requirement for prefunctionalized supports redundant. The immobilized catalyst was characterized by solid-state 13C and 31P NMR spectroscopy, SEM, and energy-dispersive X-ray spectroscopy. The immobilized catalyst (1 mol %) was employed in the synthesis of cyclic carbonates from epoxides and CO2. Notably, the efficiency of the plasma-treated catalyst on SiO2 was higher than those of the SiO2 support impregnated with the catalyst and even the homogeneous counterpart. After optimization of the reaction conditions, 13 terminal and four internal epoxides were converted with CO2 to the respective cyclic carbonates in yields of up to 99 %. Furthermore, the possibility to recycle the immobilized catalyst was evaluated. Even though the catalyst could be reused, the yields gradually decreased from the third run. However, this is the first example of the recycling of a plasma-immobilized catalyst, which opens new possibilities in the recovery and reuse of catalysts. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Coagulation using organic carbonates opens up a sustainable route towards regenerated cellulose films
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2020) Nguyen, Mai N.; Kragl, Udo; Barke, Ingo; Lange, Regina; Lund, Henrik; Frank, Marcus; Springer, Armin; Aladin, Victoria; Corzilius, Björn; Hollmann, Dirk
    Due to their biodegradability, biocompatibility and sustainable nature, regenerated cellulose (RC) films are of enormous relevance for green applications including medicinal, environmental and separation technologies. However, the processes used so far are very hazardous to the environment and health. Here, we disclose a simple, fast, environmentally friendly, nontoxic and cost-effective processing method for preparing RC films. High quality non-transparent and transparent RC films and powders can be produced by dissolution with tetrabutylphosphonium hydroxide [TBPH]/[TBP]+[OH]− followed by coagulation with organic carbonates. Investigations on the coagulation mechanism revealed an extremely fast reaction between the carbonates and the hydroxide ions. The high-quality powders and films were fully characterized with respect to structure, surface morphology, permeation and selectivity. This method represents a future-oriented green alternative to known industrial processes. © 2020, The Author(s).