Search Results

Now showing 1 - 4 of 4
  • Item
    Switchable adhesion in vacuum using bio-inspired dry adhesives
    (Washington D.C. : American Chemical Society, 2015) Purtov, Julia; Frensemeier, Mareike; Kroner, Elmar
    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm2 provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects.
  • Item
    Indentation-induced two-way shape-memory effect in aged Ti-50.9 at.% Ni
    (Cambridge : Cambridge University Press, 2015) Frensemeier, Mareike; Arzt, Eduard; Qin, Enwei; Frick, Carl P.; Schneider, Andreas S.
    In this study, Vickers indentation was used to investigate the two-way shape-memory effect (TWSME) in an austenitic Ti-50.9 at.% Ni alloy, exposed to different heat treatments. Three aging treatments were used to manipulate the size of Ti3Ni4 precipitates. All samples were Vickers indented, and the indent depth was investigated as function of thermal cycling. The TWSME was found only in the material aged at 400 °C, which contained coherent precipitates. Thermal cycling shows stable TWSME, however, heating well above the austenite finish temperature lead to permanent austenitic protrusions. The results indicate that stabilized martensite plays a critical role in creating TWSME surfaces.
  • Item
    Temperature-induced switchable adhesion using nickel-titanium-polydimethylsiloxane hybrid surfaces
    (Hoboken, NJ : Wiley, 2015) Frensemeier, Mareike; Kaiser, Jessica S.; Frick, Carl P.; Schneider, Andreas S.; Arzt, Eduard; Fertig III, Ray S.; Kroner, Elmar
    A switchable dry adhesive based on a nickel–titanium (NiTi) shape-memory alloy with an adhesive silicone rubber surface has been developed. Although several studies investigate micropatterned, bioinspired adhesive surfaces, very few focus on reversible adhesion. The system here is based on the indentation-induced two-way shape-memory effect in NiTi alloys. NiTi is trained by mechanical deformation through indentation and grinding to elicit a temperature-induced switchable topography with protrusions at high temperature and a flat surface at low temperature. The trained surfaces are coated with either a smooth or a patterned adhesive polydimethylsiloxane (PDMS) layer, resulting in a temperature-induced switchable surface, used for dry adhesion. Adhesion tests show that the temperature-induced topographical change of the NiTi influences the adhesive performance of the hybrid system. For samples with a smooth PDMS layer the transition from flat to structured state reduces adhesion by 56%, and for samples with a micropatterned PDMS layer adhesion is switchable by nearly 100%. Both hybrid systems reveal strong reversibility related to the NiTi martensitic phase transformation, allowing repeated switching between an adhesive and a nonadhesive state. These effects have been discussed in terms of reversible changes in contact area and varying tilt angles of the pillars with respect to the substrate surface.
  • Item
    Shape-memory topographies on nickel–titanium alloys trained by embossing and pulse electrochemical machining
    (Hoboken, NJ : Wiley, 2016) Frensemeier, Mareike; Schirra, Dominik; Weinmann, Martin; Weber, Oliver; Kroner, Elmar K.
    The two-way shape-memory effect (TWSME) in Nickel–titanium (NiTi) alloys is of interest for applications in aerospace, biomedicine, and microengineering due to its reversible shape recovery. In this study, the authors demonstrate two approaches to obtain switchable surface structures using the TWSME. Samples are structured using two surface geometries by either cold embossing, or pulse electrochemical machining (PECM). After planarization, a change from optically smooth to structured and vice versa is observed. The switch is induced through heating and cooling the sample above and below the phase transformation temperature. The protrusions reflect the pattern applied by the two processes. Both methods are promising for preparation of switchable metallic surfaces on larger areas.