2 results
Search Results
Now showing 1 - 2 of 2
- ItemStabilization of the ζ-Cu10Sn3 Phase by Ni at Soldering-Relevant Temperatures(Heidelberg : Springer Verlag, 2020) Wieser, C.; Hügel, W.; Martin, S.; Freudenberger, J.; Leineweber, A.A current issue in electrical engineering is the enhancement of the quality of solder joints. This is mainly associated with the ongoing electrification of transportation as well as the miniaturization of (power) electronics. For the reliability of solder joints, intermetallic phases in the microstructure of the solder are of great importance. The formation of the intermetallic phases in the Cu-Sn solder system was investigated for different annealing temperatures between 472 K and 623 K using pure Cu as well as Cu-1at.%Ni and Cu-3at.%Ni substrate materials. These are relevant for lead frame materials in electronic components. The Cu and Cu-Ni alloys were in contact to galvanic plated Sn. This work is focused on the unexpected formation of the hexagonal ζ-(Cu,Ni)10Sn3 phase at annealing temperatures of 523–623 K, which is far below the eutectoid decomposition temperature of binary ζ-Cu10Sn3 of about 855 K. By using scanning electron microscopy, energy dispersive X-ray spectroscopy, electron backscatter diffraction and X-ray diffraction the presence of the ζ phase was confirmed and its structural properties were analyzed.
- ItemEntropy of conduction electrons from transport experiments(Basel : MDPI AG, 2020) Pérez, N.; Wolf, C.; Kunzmann, A.; Freudenberger, J.; Krautz, M.; Weise, B.; Nielsch, K.; Schierning, G.The entropy of conduction electrons was evaluated utilizing the thermodynamic definition of the Seebeck coefficient as a tool. This analysis was applied to two dierent kinds of scientific questions that can-if at all-be only partially addressed by other methods. These are the field-dependence of meta-magnetic phase transitions and the electronic structure in strongly disordered materials, such as alloys. We showed that the electronic entropy change in meta-magnetic transitions is not constant with the applied magnetic field, as is usually assumed. Furthermore, we traced the evolution of the electronic entropy with respect to the chemical composition of an alloy series. Insights about the strength and kind of interactions appearing in the exemplary materials can be identified in the experiments.