Search Results

Now showing 1 - 4 of 4
  • Item
    Optical properties of long-range transported Saharan dust over Barbados as measured by dual-wavelength depolarization Raman lidar measurements
    (München : European Geopyhsical Union, 2015) Groß, S.; Freudenthaler, V.; Schepanski, K.; Toledano, C.; Schäfler, A.; Ansmann, A.; Weinzierl, B.
    Dual-wavelength Raman and depolarization lidar observations were performed during the Saharan Aerosol Long-range Transport and Aerosol-Cloud interaction Experiment in Barbados in June and July 2013 to characterize the optical properties and vertical distribution of long-range transported Saharan dust after transport across the Atlantic Ocean. Four major dust events were studied during the measurements from 15 June to 13 July 2013 with aerosol optical depths at 532 nm of up to 0.6. The vertical aerosol distribution was characterized by a three-layer structure consisting of the boundary layer, the entrainment or mixing layer and the pure Saharan dust layer. The upper boundary of the pure dust layer reached up to 4.5 km in height. The contribution of the pure dust layer was about half of the total aerosol optical depth at 532 nm. The total dust contribution was about 50–70 % of the total aerosol optical depth at 532 nm. The lidar ratio within the pure dust layer was found to be wavelength independent with mean values of 53 ± 5 sr at 355 nm and 56 ± 7 sr at 532 nm. For the particle linear depolarization ratio, wavelength-independent mean values of 0.26 ± 0.03 at 355 nm and 0.27 ± 0.01 at 532 nm have been found.
  • Item
    Optical properties of aerosol mixtures derived from sun-sky radiometry during SAMUM-2
    (Milton Park : Taylor & Francis, 2017) Toledano, C.; Wiegner, M.; Groß, S.; Freudenthaler, V.; Gasteiger, J.; Müller, D.; Müller, T.; Schladitz, A.; Weinzierl, B.; Torres, B.; O’neill, N.T.
    The SAMUM-2 experiment took place in the Cape Verde is lands in January–February 2008. The colocated ground-based and airborne instruments allow the study of desert dust optical and microphysical properties in a closure experiment. The Meteorological Institute of the University of Munich deployed one sun-sky photometer and two tropospheric lidar systems. A travelling AERONET-Cimel sun-sky radiometer was also deployed. During the measurement period the aerosol scenario over Cape Verde mostly consisted of a dust layer below 2 km and a smoke-dust layer above 2–4 km a.s.l. The Saharan dust arrived at the site from the NE, whereas the smoke originated in the African equatorial region. This paper describes the main results of the Sun photometer observations, supported by lidar information. An analysis of the variations in the aerosol optical depth (AOD) in the range 340–1550 nm, the Ångström exponent, volume size distributions and single scattering albedo is presented. The aerosol mixtures are analysed by means of the fine mode fraction of the AOD provided by the sun-sky inversion data and the Spectral Deconvolution Algorithm. The mean AOD (500 nm) was 0.31, with associated low ångström exponent of 0.46. Several types of events were detected within the data set, with prevalence of dust or mixtures as characterized by the Ångstr¨om exponents of extinction and absorption and the fine mode fraction. Aerosol properties derived from sunphotometry were compared to in situ measurements of size distribution, effective radius and single scattering albedo.
  • Item
    Numerical simulations of optical properties of Saharan dust aerosols with emphasis on lidar applications
    (Milton Park : Taylor & Francis, 2017) Wiegner, M.; Gasteiger, J.; Kandler, K.; Weinzierl, B.; Rasp, K.; Esselborn, M.; Freudenthaler, V.; Heese, B.; Toledano, C.; Tesche, M.; Althausen, D.
    In the framework of the Saharan Mineral Dust Experiment (SAMUM) for the first time the spectral dependence of particle linear depolarization ratios was measured by combining four lidar systems. In this paper these measurements are compared with results from scattering theory based on the T-matrix method. For this purpose, in situ measurements—size distribution, shape distribution and refractive index—were used as input parameters; particle shape was approximated by spheroids. A sensitivity study showed that lidar-related parameters—lidar ratio Sp and linear depolarization ratio δp—are very sensitive to changes of all parameters. The simulated values of the δp are in the range of 20% and 31% and thus in the range of the measurements. The spectral dependence is weak, so that it could not be resolved by the measurements. Calculated lidar ratios based on the measured microphysics and considering equivalent radii up to 7.5μm show a range of possible values between 29 and 50 sr at λ = 532 nm. Larger Sp might be possible if the real part of the refractive index is small and the imaginary part is large. A strict validation was however not possible as too many microphysical parameters influence Sp and δp that could not be measured with the required accuracy.
  • Item
    EARLINET observations of the 14-22-May long-range dust transport event during SAMUM 2006: Validation of results from dust transport modelling
    (Milton Park : Taylor & Francis, 2017) Müller, D.; Heinold, B.; Tesche, M.; Tegen, I.; Althausen, D.; Alados Arboledas, L.; Amiridis, V.; Amodeo, A.; Ansmann, A.; Balis, D.; Comeron, A.; D’mico, G.; Gerasopoulos, E.; Guerrero-Rascado, J.L.; Freudenthaler, V.; Giannakaki, E.; Heese, B.; Iarlori, M.; Knippertz, P.; Mamouri, R.E.; Mona, L.; Papayannis, A.; Pappalardo, G.; Perrone, R-M.; Pisani, G.; Rizi, V.; Sicard, M.; Spinelli, N.; Tafuro, A.; Wiegner, M.
    We observed a long-range transport event of mineral dust from North Africa to South Europe during the Saharan Mineral Dust Experiment (SAMUM) 2006. Geometrical and optical properties of that dust plume were determined with Sun photometer of the Aerosol Robotic Network (AERONET) and Raman lidar near the North African source region, and with Sun photometers of AERONET and lidars of the European Aerosol Research Lidar Network (EARLINET) in the far field in Europe. Extinction-to-backscatter ratios of the dust plume over Morocco and Southern Europe do not differ. Ångstr¨om exponents increase with distance from Morocco. We simulated the transport, and geometrical and optical properties of the dust plume with a dust transport model. The model results and the experimental data show similar times regarding the appearance of the dust plume over each EARLINET site. Dust optical depth from the model agrees in most cases to particle optical depth measured with the Sun photometers. The vertical distribution of the mineral dust could be satisfactorily reproduced, if we use as benchmark the extinction profiles measured with lidar. In some cases we find differences. We assume that insufficient vertical resolution of the dust plume in the model calculations is one reason for these deviations.