Search Results

Now showing 1 - 10 of 18
  • Item
    Medical Gas Plasma Jet Technology Targets Murine Melanoma in an Immunogenic Fashion
    (Weinheim : Wiley-VCH, 2020) Bekeschus, Sander; Clemen, Ramona; Nießner, Felix; Sagwal, Sanjeev Kumar; Freund, Eric; Schmidt, Anke
    Medical technologies from physics are imperative in the diagnosis and therapy of many types of diseases. In 2013, a novel cold physical plasma treatment concept was accredited for clinical therapy. This gas plasma jet technology generates large amounts of different reactive oxygen and nitrogen species (ROS). Using a melanoma model, gas plasma technology is tested as a novel anticancer agent. Plasma technology derived ROS diminish tumor growth in vitro and in vivo. Varying the feed gas mixture modifies the composition of ROS. Conditions rich in atomic oxygen correlate with killing activity and elevate intratumoral immune-infiltrates of CD8+ cytotoxic T-cells and dendritic cells. T-cells from secondary lymphoid organs of these mice stimulated with B16 melanoma cells ex vivo show higher activation levels as well. This correlates with immunogenic cancer cell death and higher calreticulin and heat-shock protein 90 expressions induced by gas plasma treatment in melanoma cells. To test the immunogenicity of gas plasma treated melanoma cells, 50% of mice vaccinated with these cells are protected from tumor growth compared to 1/6 and 5/6 mice negative control (mitomycin C) and positive control (mitoxantrone), respectively. Gas plasma jet technology is concluded to provide immunoprotection against malignant melanoma both in vitro and in vivo.
  • Item
    Plasma-derived reactive species shape a differentiation profile in human monocytes
    (Basel : MDPI, 2019) Freund, Eric; Moritz, Juliane; Stope, Matthias; Seebauer, Christian; Schmidt, Anke; Bekeschus, Sander
    Background: Monocyte-derived macrophages are key regulators and producers of reactive oxygen and nitrogen species (ROS/RNS). Pre-clinical and clinical studies suggest that cold physical plasma may be beneficial in the treatment of inflammatory conditions via the release of ROS/RNS. However, it is unknown how plasma treatment affects monocytes and their differentiation profile. Methods: Naïve or phorbol-12-myristate-13-acetate (PMA)-pulsed THP-1 monocytes were exposed to cold physical plasma. The cells were analyzed regarding their metabolic activity as well as flow cytometry (analysis of viability, oxidation, surface marker expression and cytokine secretion) and high content imaging (quantitative analysis of morphology. Results: The plasma treatment affected THP-1 metabolisms, viability, and morphology. Furthermore, a significant modulation CD55, CD69, CD271 surface-expression and increase of inflammatory IL1β, IL6, IL8, and MCP1 secretion was observed upon plasma treatment. Distinct phenotypical changes in THP-1 cells arguing for a differentiation profile were validated in primary monocytes from donor blood. As a functional outcome, plasma-treated monocytes decreased the viability of co-cultured melanoma cells to a greater extent than their non-treated counterparts. Conclusions: Our results suggest plasma-derived ROS/RNS shaped a differentiation profile in human monocytes as evidenced by their increased inflammatory profile (surface marker and cytokines) as well as functional outcome (tumor toxicity). © 2019 by the authors.
  • Item
    Murine Macrophages Modulate Their Inflammatory Profile in Response to Gas Plasma-Inactivated Pancreatic Cancer Cells
    (Basel : MDPI, 2021) Khabipov, Aydar; Freund, Eric; Liedtke, Kim Rouven; Käding, Andre; Riese, Janik; van der Linde, Julia; Kersting, Stephan; Partecke, Lars-Ivo; Bekeschus, Sander
    Macrophages and immuno-modulation play a dominant role in the pathology of pancreatic cancer. Gas plasma is a technology recently suggested to demonstrate anticancer efficacy. To this end, two murine cell lines were employed to analyze the inflammatory consequences of plasma-treated pancreatic cancer cells (PDA) on macrophages using the kINPen plasma jet. Plasma treatment decreased the metabolic activity, viability, and migratory activity in an ROS- and treatment time-dependent manner in PDA cells in vitro. These results were confirmed in pancreatic tumors grown on chicken embryos in the TUM-CAM model (in ovo). PDA cells promote tumor-supporting M2 macrophage polarization and cluster formation. Plasma treatment of PDA cells abrogated this cluster formation with a mixed M1/M2 phenotype observed in such co-cultured macrophages. Multiplex chemokine and cytokine quantification showed a marked decrease of the neutrophil chemoattractant CXCL1, IL6, and the tumor growth supporting TGFβ and VEGF in plasma-treated compared to untreated co-culture settings. At the same time, macrophage-attractant CCL4 and MCP1 release were profoundly enhanced. These cellular and secretome data suggest that the plasma-inactivated PDA6606 cells modulate the inflammatory profile of murine RAW 264.7 macrophages favorably, which may support plasma cancer therapy.
  • Item
    Identification of two kinase inhibitors with synergistic toxicity with low-dose hydrogen peroxide in colorectal cancer cells in vitro
    (Basel : MDPI AG, 2020) Freund, Eric; Liedtke, Kim-Rouven; Miebach, Lea; Wende, Kristian; Heidecke, Amanda; Kaushik, Nagendra Kumar; Choi, Eun Ha; Partecke, Lars-Ivo; Bekeschus, Sander
    Colorectal carcinoma is among the most common types of cancers. With this disease, diffuse scattering in the abdominal area (peritoneal carcinosis) often occurs before diagnosis, making surgical removal of the entire malignant tissue impossible due to a large number of tumor nodules. Previous treatment options include radiation and its combination with intraperitoneal heat-induced chemotherapy (HIPEC). Both options have strong side effects and are often poor in therapeutic efficacy. Tumor cells often grow and proliferate dysregulated, with enzymes of the protein kinase family often playing a crucial role. The present study investigated whether a combination of protein kinase inhibitors and low-dose induction of oxidative stress (using hydrogen peroxide, H2O2) has an additive cytotoxic effect on murine, colorectal tumor cells (CT26). Protein kinase inhibitors from a library of 80 substances were used to investigate colorectal cancer cells for their activity, morphology, and immunogenicity (immunogenic cancer cell death, ICD) upon mono or combination. Toxic compounds identified in 2D cultures were confirmed in 3D cultures, and additive cytotoxicity was identified for the substances lavendustin A, GF109203X, and rapamycin. Toxicity was concomitant with cell cycle arrest, but except HMGB1, no increased expression of immunogenic markers was identified with the combination treatment. The results were validated for GF109203X and rapamycin but not lavendustin A in the 3D model of different colorectal (HT29, SW480) and pancreatic cancer cell lines (MiaPaca, Panc01). In conclusion, our in vitro data suggest that combining oxidative stress with chemotherapy would be conceivable to enhance antitumor efficacy in HIPEC. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Gas plasma-conditioned ringer’s lactate enhances the cytotoxic activity of cisplatin and gemcitabine in pancreatic cancer in vitro and in ovo
    (Basel : MDPI AG, 2020) Liedtke, Kim-Rouven; Freund, Eric; Hermes, Maraike; Oswald, Stefan; Heidecke, Claus-Dieter; Partecke, Lars-Ivo; Bekeschus, Sander
    Pancreatic cancer is one of the most aggressive tumor entities. Diffuse metastatic infiltration of vessels and the peritoneum restricts curative surgery. Standard chemotherapy protocols include the cytostatic drug gemcitabine with limited efficacy at considerable toxicity. In search of a more effective and less toxic treatment modality, we tested in human pancreatic cancer cells (MiaPaca and PaTuS) a novel combination therapy consisting of cytostatic drugs (gemcitabine or cisplatin) and gas plasma-conditioned Ringer’s lactate that acts via reactive oxygen species. A decrease in metabolic activity and viability, change in morphology, and cell cycle arrest was observed in vitro. The combination treatment was found to be additively toxic. The findings were validated utilizing an in ovo tumor model of solid pancreatic tumors growing on the chorionallantois membrane of fertilized chicken eggs (TUM-CAM). The combination of the drugs (especially cisplatin) with the plasma-conditioned liquid significantly enhanced the anti-cancer effects, resulting in the induction of cell death, cell cycle arrest, and inhibition of cell growth with both of the cell lines tested. In conclusion, our novel combination approach may be a promising new avenue to increase the tolerability and efficacy of locally applied chemotherapeutic in diffuse metastatic peritoneal carcinomatosis of the pancreas. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Plasma treatment limits human melanoma spheroid growth and metastasis independent of the ambient gas composition
    (Basel : MDPI AG, 2020) Hasse, Sybille; Meder, Tita; Freund, Eric; Woedtke, Thomas von; Bekeschus, Sander
    Melanoma skin cancer is still a deadly disease despite recent advances in therapy. Previous studies have suggested medical plasma technology as a promising modality for melanoma treatment. However, the efficacy of plasmas operated under different ambient air conditions and the comparison of direct and indirect plasma treatments are mostly unexplored for this tumor entity. Moreover, exactly how plasma treatment affects melanoma metastasis has still not been explained. Using 3D tumor spheroid models and high-content imaging technology, we addressed these questions by utilizing one metastatic and one non-metastatic human melanoma cell line targeted with an argon plasma jet. Plasma treatment was toxic in both cell lines. Modulating the oxygen and nitrogen ambient air composition (100/0, 75/25, 50/50, 25/75, and 0/100) gave similar toxicity and reduced the spheroid growth for all conditions. This was the case for both direct and indirect treatments, with the former showing a treatment time-dependent response while the latter resulted in cytotoxicity with the longest treatment time investigated. Live-cell imaging of in-gel cultured spheroids indicated that plasma treatment did not enhance metastasis, and flow cytometry showed a significant modulation of S100A4 but not in any of the five other metastasis-related markers (β-catenin, E-cadherin, LEF1, SLUG, and ZEB1) investigated. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Risk assessment of kINPen plasma treatment of four human pancreatic cancer cell lines with respect to metastasis
    (Basel : MDPI AG, 2019) Bekeschus, Sander; Freund, Eric; Spadola, Chiara; Privat-Maldonado, Angela; Hackbarth, Christine; Bogaerts, Annemie; Schmidt, Anke; Wende, Kristian; Weltmann, Klaus-Dieter; Woedtke, Thomas von; Heidecke, Claus-Dieter; Partecke, Lars-Ivo; Käding, André
    Cold physical plasma has limited tumor growth in many preclinical models and is, therefore, suggested as a putative therapeutic option against cancer. Yet, studies investigating the cells’ metastatic behavior following plasma treatment are scarce, although being of prime importance to evaluate the safety of this technology. Therefore, we investigated four human pancreatic cancer cell lines for their metastatic behavior in vitro and in chicken embryos (in ovo). Pancreatic cancer was chosen as it is particularly metastatic to the peritoneum and systemically, which is most predictive for outcome. In vitro, treatment with the kINPen plasma jet reduced pancreatic cancer cell activity and viability, along with unchanged or decreased motility. Additionally, the expression of adhesion markers relevant for metastasis was down-regulated, except for increased CD49d. Analysis of 3D tumor spheroid outgrowth showed a lack of plasma-spurred metastatic behavior. Finally, analysis of tumor tissue grown on chicken embryos validated the absence of an increase of metabolically active cells physically or chemically detached with plasma treatment. We conclude that plasma treatment is a safe and promising therapeutic option and that it does not promote metastatic behavior in pancreatic cancer cells in vitro and in ovo. © 2019 by the authors.
  • Item
    Combination of Gas Plasma and Radiotherapy Has Immunostimulatory Potential and Additive Toxicity in Murine Melanoma Cells In Vitro
    (Basel : Molecular Diversity Preservation International, 2020) Pasqual-Melo, Gabriella; Sagwal, Sanjeev Kumar; Freund, Eric; Gandhirajan, Rajesh Kumar; Frey, Benjamin; von Woedtke, Thomas; Gaipl, Udo; Bekeschus, Sander
    Despite continuous advances in therapy, malignant melanoma is still among the deadliest types of cancer. At the same time, owing to its high plasticity and immunogenicity, melanoma is regarded as a model tumor entity when testing new treatment approaches. Cold physical plasma is a novel anticancer tool that utilizes a plethora of reactive oxygen species (ROS) being deposited on the target cells and tissues. To test whether plasma treatment would enhance the toxicity of an established antitumor therapy, ionizing radiation, we combined both physical treatment modalities targeting B16F10 murine melanoma cell in vitro. Repeated rather than single radiotherapy, in combination with gas plasma-introduced ROS, induced apoptosis and cell cycle arrest in an additive fashion. In tendency, gas plasma treatment sensitized the cells to subsequent radiotherapy rather than the other way around. This was concomitant with increased levels of TNFa, IL6, and GM-CSF in supernatants. Murine JAWS dendritic cells cultured in these supernatants showed an increased expression of cell surface activation markers, such as MHCII and CD83. For PD-L1 and PD-L2, increased expression was observed. Our results are the first to suggest an additive therapeutic effect of gas plasma and radiotherapy, and translational tumor models are needed to develop this concept further. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Argon Plasma Exposure Augments Costimulatory Ligands and Cytokine Release in Human Monocyte-Derived Dendritic Cells
    (Basel : Molecular Diversity Preservation International (MDPI), 2021) Bekeschus, Sander; Meyer, Dorothee; Arlt, Kevin; von Woedtke, Thomas; Miebach, Lea; Freund, Eric; Clemen, Ramona
    Cold physical plasma is a partially ionized gas expelling many reactive oxygen and nitrogen species (ROS/RNS). Several plasma devices have been licensed for medical use in dermatology, and recent experimental studies suggest their putative role in cancer treatment. In cancer therapies with an immunological dimension, successful antigen presentation and inflammation modulation is a key hallmark to elicit antitumor immunity. Dendritic cells (DCs) are critical for this task. However, the inflammatory consequences of DCs following plasma exposure are unknown. To this end, human monocyte-derived DCs (moDCs) were expanded from isolated human primary monocytes; exposed to plasma; and their metabolic activity, surface marker expression, and cytokine profiles were analyzed. As controls, hydrogen peroxide, hypochlorous acid, and peroxynitrite were used. Among all types of ROS/RNS-mediated treatments, plasma exposure exerted the most notable increase of activation markers at 24 h such as CD25, CD40, and CD83 known to be crucial for T cell costimulation. Moreover, the treatments increased interleukin (IL)-1α, IL-6, and IL-23. Altogether, this study suggests plasma treatment augmenting costimulatory ligand and cytokine expression in human moDCs, which might exert beneficial effects in the tumor microenvironment.
  • Item
    Gas plasma-treated prostate cancer cells augment myeloid cell activity and cytotoxicity
    (Basel : MDPI, 2020) Bekeschus, Sander; Ressel, Verena; Freund, Eric; Gelbrich, Nadine; Mustea, Alexander; Stope, Matthias B.
    Despite recent improvements in cancer treatment, with many of them being related to foster antitumor immunity, tumor-related deaths continue to be high. Novel avenues are needed to complement existing therapeutic strategies in oncology. Medical gas plasma technology recently gained attention due to its antitumor activity. Gas plasmas act via the local deposition of a plethora of reactive oxygen species (ROS) that promote the oxidative cancer cell death. The immunological consequences of plasma-mediated tumor cell death are only poorly understood, however. To this end, we exposed two prostate cancer cell lines (LNCaP, PC3) to gas plasma in vitro, and investigated the immunomodulatory effects of the supernatants in as well as of direct co-culturing with two human myeloid cell lines (THP-1, HL-60). After identifying the cytotoxic action of the kINPen plasma jet, the supernatants of plasma-treated prostate cancer cells modulated myeloid cell-related mitochondrial ROS production and their metabolic activity, proliferation, surface marker expression, and cytokine release. Direct co-culture amplified differentiation-like surface marker expression in myeloid cells and promoted their antitumor-toxicity in the gas plasma over the untreated control conditions. The results suggest that gas plasma-derived ROS not only promote prostate cancer cell death but also augment myeloid cell activity and cytotoxicity. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.