Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Gas Plasma Technology Augments Ovalbumin Immunogenicity and OT-II T Cell Activation Conferring Tumor Protection in Mice

2021, Clemen, Ramona, Freund, Eric, Mrochen, Daniel, Miebach, Lea, Schmidt, Anke, Rauch, Bernhard H., Lackmann, Jan‐Wilm, Martens, Ulrike, Wende, Kristian, Lalk, Michael, Delcea, Mihaela, Bröker, Barbara M., Bekeschus, Sander

Reactive oxygen species (ROS/RNS) are produced during inflammation and elicit protein modifications, but the immunological consequences are largely unknown. Gas plasma technology capable of generating an unmatched variety of ROS/RNS is deployed to mimic inflammation and study the significance of ROS/RNS modifications using the model protein chicken ovalbumin (Ova vs oxOva). Dynamic light scattering and circular dichroism spectroscopy reveal structural modifications in oxOva compared to Ova. T cells from Ova-specific OT-II but not from C57BL/6 or SKH-1 wild type mice presents enhanced activation after Ova addition. OxOva exacerbates this activation when administered ex vivo or in vivo, along with an increased interferon-gamma production, a known anti-melanoma agent. OxOva vaccination of wild type mice followed by inoculation of syngeneic B16F10 Ova-expressing melanoma cells shows enhanced T cell number and activation, decreased tumor burden, and elevated numbers of antigen-presenting cells when compared to their Ova-vaccinated counterparts. Analysis of oxOva using mass spectrometry identifies three hot spots regions rich in oxidative modifications that are associated with the increased T cell activation. Using Ova as a model protein, the findings suggest an immunomodulating role of multi-ROS/RNS modifications that may spur novel research lines in inflammation research and for vaccination strategies in oncology.

Loading...
Thumbnail Image
Item

Plasma-derived reactive species shape a differentiation profile in human monocytes

2019, Freund, Eric, Moritz, Juliane, Stope, Matthias, Seebauer, Christian, Schmidt, Anke, Bekeschus, Sander

Background: Monocyte-derived macrophages are key regulators and producers of reactive oxygen and nitrogen species (ROS/RNS). Pre-clinical and clinical studies suggest that cold physical plasma may be beneficial in the treatment of inflammatory conditions via the release of ROS/RNS. However, it is unknown how plasma treatment affects monocytes and their differentiation profile. Methods: Naïve or phorbol-12-myristate-13-acetate (PMA)-pulsed THP-1 monocytes were exposed to cold physical plasma. The cells were analyzed regarding their metabolic activity as well as flow cytometry (analysis of viability, oxidation, surface marker expression and cytokine secretion) and high content imaging (quantitative analysis of morphology. Results: The plasma treatment affected THP-1 metabolisms, viability, and morphology. Furthermore, a significant modulation CD55, CD69, CD271 surface-expression and increase of inflammatory IL1β, IL6, IL8, and MCP1 secretion was observed upon plasma treatment. Distinct phenotypical changes in THP-1 cells arguing for a differentiation profile were validated in primary monocytes from donor blood. As a functional outcome, plasma-treated monocytes decreased the viability of co-cultured melanoma cells to a greater extent than their non-treated counterparts. Conclusions: Our results suggest plasma-derived ROS/RNS shaped a differentiation profile in human monocytes as evidenced by their increased inflammatory profile (surface marker and cytokines) as well as functional outcome (tumor toxicity). © 2019 by the authors.