Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century

2019, Gidden, Matthew J., Riahi, Keywan, Smith, Steven J., Fujimori, Shinichiro, Luderer, Gunnar, Kriegler, Elmar, van Vuuren, Detlef P., van den Berg, Maarten, Feng, Leyang, Klein, David, Calvin, Katherine, Doelman, Jonathan C., Frank, Stefan, Fricko, Oliver, Harmsen, Mathijs, Hasegawa, Tomoko, Havlik, Petr, Hilaire, Jérôme, Hoesly, Rachel, Horing, Jill, Popp, Alexander, Stehfest, Elke, Takahashi, Kiyoshi

We present a suite of nine scenarios of future emissions trajectories of anthropogenic sources, a key deliverable of the ScenarioMIP experiment within CMIP6. Integrated assessment model results for 14 different emissions species and 13 emissions sectors are provided for each scenario with consistent transitions from the historical data used in CMIP6 to future trajectories using automated harmonization before being downscaled to provide higher emissions source spatial detail. We find that the scenarios span a wide range of end-of-century radiative forcing values, thus making this set of scenarios ideal for exploring a variety of warming pathways. The set of scenarios is bounded on the low end by a 1.9 W m−2 scenario, ideal for analyzing a world with end-of-century temperatures well below 2 ∘C, and on the high end by a 8.5 W m−2 scenario, resulting in an increase in warming of nearly 5 ∘C over pre-industrial levels. Between these two extremes, scenarios are provided such that differences between forcing outcomes provide statistically significant regional temperature outcomes to maximize their usefulness for downstream experiments within CMIP6. A wide range of scenario

Loading...
Thumbnail Image
Item

Environmental co-benefits and adverse side-effects of alternative power sector decarbonization strategies

2019, Luderer, Gunnar, Pehl, Michaja, Arvesen, Anders, Gibon, Thomas, Bodirsky, Benjamin L., de Boer, Harmen Sytze, Fricko, Oliver, Hejazi, Mohamad, Humpenöder, Florian, Iyer, Gokul, Mima, Silvana, Mouratiadou, Ioanna, Pietzcker, Robert C., Popp, Alexander, van den Berg, Maarten, van Vuuren, Detlef, Hertwich, Edgar G.

A rapid and deep decarbonization of power supply worldwide is required to limit global warming to well below 2 °C. Beyond greenhouse gas emissions, the power sector is also responsible for numerous other environmental impacts. Here we combine scenarios from integrated assessment models with a forward-looking life-cycle assessment to explore how alternative technology choices in power sector decarbonization pathways compare in terms of non-climate environmental impacts at the system level. While all decarbonization pathways yield major environmental co-benefits, we find that the scale of co-benefits as well as profiles of adverse side-effects depend strongly on technology choice. Mitigation scenarios focusing on wind and solar power are more effective in reducing human health impacts compared to those with low renewable energy, while inducing a more pronounced shift away from fossil and toward mineral resource depletion. Conversely, non-climate ecosystem damages are highly uncertain but tend to increase, chiefly due to land requirements for bioenergy.