Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Employing Nanostructured Scaffolds to Investigate the Mechanical Properties of Adult Mammalian Retinae Under Tension

2020, Juncheed, Kantida, Kohlstrunk, Bernd, Friebe, Sabrina, Dallacasagrande, Valentina, Maurer, Patric, Reichenbach, Andreas, Mayr, Stefan G., Zink, Mareike

Numerous eye diseases are linked to biomechanical dysfunction of the retina. However, the underlying forces are almost impossible to quantify experimentally. Here, we show how biomechanical properties of adult neuronal tissues such as porcine retinae can be investigated under tension in a home-built tissue stretcher composed of nanostructured TiO2 scaffolds coupled to a self-designed force sensor. The employed TiO2 nanotube scaffolds allow for organotypic long-term preservation of adult tissues ex vivo and support strong tissue adhesion without the application of glues, a prerequisite for tissue investigations under tension. In combination with finite element calculations we found that the deformation behavior is highly dependent on the displacement rate which results in Young’s moduli of (760–1270) Pa. Image analysis revealed that the elastic regime is characterized by a reversible shear deformation of retinal layers. For larger deformations, tissue destruction and sliding of retinal layers occurred with an equilibration between slip and stick at the interface of ruptured layers, resulting in a constant force during stretching. Since our study demonstrates how porcine eyes collected from slaughterhouses can be employed for ex vivo experiments, our study also offers new perspectives to investigate tissue biomechanics without excessive animal experiments. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.

Loading...
Thumbnail Image
Item

Regeneration of TiO 2 Nanotube Arrays after Long-Term Cell and Tissue Culture for Multiple Use - An Environmental Scanning Electron Microscopy (ESEM) Survey of Adult Pig Retina and beyond

2019, Friebe, Sabrina, Mayr, Stefan G.

Long-term organotypic culture of adult tissues not only open up possibilities for studying complex structures of explants in vitro, but also can be employed e.g. to investigate pathological changes, their fingerprints on tissue mechanics, as well as the effectiveness of drugs. While conventional culture methods do not allow for survival times of more than a few days, we have demonstrated recently that TiO 2 nanotube arrays allow to maintain integrity of numerous tissues, including retina, brain, spline and tonsils, for as long as 2 weeks in vitro. A mystery in culturing has been the interaction of tissue with these substrates, which is also reflected by tissue debris after liftoff. As the latter reveals fingerprints of tissue adhesion and impedes with nanotube array reuse, we address within the present environmental scanning electron study debris nature and the effectiveness of cleaning approaches of distinct physical and chemical methods, including UV-light irradiation, O2 plasma treatment and application of an enzyme-based buffer. This will lays the foundation for large-scale regeneration and reuse of nanotube arrays in science and clinical research. © 2019 The Author(s).