Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

In Situ Room Temperature Electron-Beam Driven Graphene Growth from Hydrocarbon Contamination in a Transmission Electron Microscope

2018-5-26, Rummeli, Mark H., Pan, Yumo, Zhao, Liang, Gao, Jing, Ta, Huy Q., Martinez, Ignacio G., Mendes, Rafael G., Gemming, Thomas, Fu, Lei, Bachmatiuk, Alicja, Liu, Zhongfan

The excitement of graphene (as well as 2D materials in general) has generated numerous procedures for the fabrication of graphene. Here we present a mini-review on a rather less known, but attractive, in situ means to fabricate graphene inside a transmission electron microscope (TEM). This is achieved in a conventional TEM (viz. no sophisticated specimen holders or microscopes are required) and takes advantage of inherent hydrocarbon contamination as a carbon source. Both catalyst free and single atom catalyst approaches are reviewed. An advantage of this technique is that not only can the growth process be imaged in situ, but this can also be achieved with atomic resolution. Moreover, in the future, one can anticipate such approaches enabling the growth of nano-materials with atomic precision.

Loading...
Thumbnail Image
Item

Single-atom catalytic growth of crystals using graphene as a case study

2021, Yang, Xiaoqin, Liu, Yu, Ta, Huy Q., Rezvani, Ehsan, Zhang, Yue, Zeng, Mengqi, Fu, Lei, Bachmatiuk, Alicja, Luo, Jinping, Liu, Lijun, Rümmeli, Mark H.

Anchored Single-atom catalysts have emerged as a cutting-edge research field holding tremendous appeal for applications in the fields of chemicals, energy and the environment. However, single-atom-catalysts for crystal growth is a nascent field. Of the few studies available, all of them are based on state-of-the-art in situ microscopy investigations and computational studies, and they all look at the growth of monolayer graphene from a single-atom catalyst. Despite the limited number of studies, they do, collectively, represent a new sub-field of single-atom catalysis, namely single-atom catalytic growth of crystalline solids. In this review, we examine them on substrate-supported and as freestanding graphene fabrication, as well as rolled-up graphene, viz., single-walled carbon nanotubes (SWCNT), grown from a single atom. We also briefly discuss the catalytic etching of graphene and SWCNT’s and conclude by outlining the future directions we envision this nascent field to take.