Search Results

Now showing 1 - 7 of 7
  • Item
    Assessing the quality of the excess chemical potential flux scheme for degenerate semiconductor device simulation
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Abdel, Dilara; Farrell, Patricio; Fuhrmann, Jürgen
    The van Roosbroeck system models current flows in (non-)degenerate semiconductor devices. Focusing on the stationary model, we compare the excess chemical potential discretization scheme, a flux approximation which is based on a modification of the drift term in the current densities, with another state-of-the-art Scharfetter-Gummel scheme, namely the diffusion-enhanced scheme. Physically, the diffusion-enhanced scheme can be interpreted as a flux approximation which modifies the thermal voltage. As a reference solution we consider an implicitly defined integral flux, using Blakemore statistics. The integral flux refers to the exact solution of a local two point boundary value problem for the continuous current density and can be interpreted as a generalized Scharfetter-Gummel scheme. All numerical discretization schemes can be used within a Voronoi finite volume method to simulate charge transport in (non-)degenerate semiconductor devices. The investigation includes the analysis of Taylor expansions, a derivation of error estimates and a visualization of errors in local flux approximations to extend previous discussions. Additionally, drift-diffusion simulations of a p-i-n device are performed.
  • Item
    MAC schemes on triangular Delaunay meshes
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2011) Eymard, Robert; Fuhrmann, Jürgen; Linke, Alexander
    We study two classical generalized MAC schemes on unstructured triangular Delaunay meshes for the incompressible Stokes and Navier-Stokes equations and prove their convergence for the first time. These generalizations use the duality between Voronoi and triangles of Delaunay meshes, in order to construct two staggered discretization schemes. Both schemes are especially interesting, since compatible finite volume discretizations for coupled convection-diffusion equations can be constructed which preserve discrete maximum principles. In the first scheme, called tangential velocity scheme, the pressures are defined at the vertices of the mesh, and the discrete velocities are tangential to the edges of the triangles. In the second scheme, called normal velocity scheme, the pressures are defined in the triangles, and the discrete velocities are normal to the edges of the triangles. For both schemes, we prove the convergence in $L^2$ for the velocities and the discrete rotations of the velocities for the Stokes and the Navier-Stokes problem. Further, for the normal velocity scheme, we also prove the strong convergence of the pressure in $L^2$. Linear and nonlinear numerical examples illustrate the theoretical predictions.
  • Item
    Inverse modeling of thin layer flow cells for detection of solubility, transport and reaction coefficients from experimental data
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Fuhrmann, Jürgen; Linke, Alexander; Merdon, Christian; Neumann, Felix; Streckenbach, Timo; Baltruschat, Helmut; Khodayari, Mehdi
    Thin layer flow cells are used in electrochemical research as experimental devices which allow to perform investigations of electrocatalytic surface reactions under controlled conditions using reasonably small electrolyte volumes. The paper introduces a general approach to simulate the complete cell using accurate numerical simulation of the coupled flow, transport and reaction processes in a flow cell. The approach is based on a mass conservative coupling of a divergence-free finite element method for fluid flow and a stable finite volume method for mass transport. It allows to perform stable and efficient forward simulations that comply with the physical bounds namely mass conservation and maximum principles for the involved species. In this context, several recent approaches to obtain divergence-free velocities from finite element simulations are discussed. In order to perform parameter identification, the forward simulation method is coupled to standard optimization tools. After an assessment of the inverse modeling approach using known real-istic data, first results of the identification of solubility and transport data for O2 dissolved in organic electrolytes are presented. A plausibility study for a more complex situation with surface reactions concludes the paper and shows possible extensions of the scope of the presented numerical tools.
  • Item
    A continuum model for yttria-stabilised zirconia incorporating triple phase boundary, lattice structure and immobile oxide ions
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Vágner, Petr; Guhlke, Clemens; Miloš, Vojtěch; Müller, Rüdiger; Fuhrmann, Jürgen
    A continuum model for yttria-stabilised zirconia (YSZ) in the framework of non-equilibrium thermodynamics is developed. Particular attention is given to i) modeling of the YSZ-metal-gas triple phase boundary, ii) incorporation of the lattice structure and immobile oxide ions within the free energy model and iii) surface reactions. A finite volume discretization method based on modified Scharfetter-Gummel fluxes is derived in order to perform numerical simulations. The model is used to study the impact of yttria and immobile oxide ions on the structure of the charged boundary layer and the double layer capacitance. Cyclic voltammograms of an air-half cell are simulated to study the effect of parameter variations on surface reactions, adsorption and anion diffusion.
  • Item
    A model of an electrochemical flow cell with porous layer
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2009) Ehrhardt, Matthias; Fuhrmann, Jürgen; Linke, Alexander
    In this paper we discuss three different mathematical models for fluid-porous interfaces in a simple channel geometry that appears e.g. in thin-layer channel flow cells. Here the difficulties arise from the possibly different orders of the corresponding differential operators in the different domains. A finite volume discretization of this model allows to calculate the limiting current of the H_2 oxidation in a porous electrode with platinum catalyst particles.
  • Item
    Highly accurate quadrature-based Scharfetter-Gummel schemes for charge transport in degenerate semiconductors
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Patriarca, Matteo; Farrell, Patricio; Fuhrmann, Jürgen; Koprucki, Thomas
    We introduce a family of two point flux expressions for charge carrier transport described by drift-diffusion problems in degenerate semiconductors with non-Boltzmann statistics which can be used in Voronoi finite volume discretizations. In the case of Boltzmann statistics, Scharfetter and Gummel derived such fluxes by solving a linear two point boundary value problem yielding a closed form expression for the flux. Instead, a generalization of this approach to the nonlinear case yields a flux value given implicitly as the solution of a nonlinear integral equation. We examine the solution of this integral equation numerically via quadrature rules to approximate the integral as well as Newtons method to solve the resulting approximate integral equation. This approach results into a family of quadrature-based Scharfetter-Gummel flux approximations. We focus on four quadrature rules and compare the resulting schemes with respect to execution time and accuracy. A convergence study reveals that the solution of the approximate integral equation converges exponentially in terms of the number of quadrature points. With very few integration nodes they are already more accurate than a state-of-the-art reference flux, especially in the challenging physical scenario of high nonlinear diffusion. Finally, we show that thermodynamic consistency is practically guaranteed.
  • Item
    Self-heating effects in organic semiconductor devices enhanced by positive temperature feedback
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2012) Fischer, Axel; Pahner, Paul; Lüssem, Björn; Leo, Karl; Scholz, Reinhard; Koprucki, Thomas; Fuhrmann, Jürgen; Gärtner, Klaus; Glitzky, Annegret
    We studied the influence of heating effects in an organic device containing a layer sequence of n-doped / intrinsic / n-doped C60 between crossbar metal electrodes. A strong positive feedback between current and temperature occurs at high current densities beyond 100 A/cm2, as predicted by the extended Gaussian disorder model (EGDM) applicable to organic semiconductors. These devices give a perfect setting for studying the heat transport at high power densities because C60 can withstand temperatures above 200ʿ C. Infrared images of the device and detailed numerical simulations of the heat transport demonstrate that the electrical circuit produces a superposition of a homogeneous power dissipation in the active volume and strong heat sources localized at the contact edges ...