Search Results

Now showing 1 - 10 of 38
Loading...
Thumbnail Image
Item

Experimental proof of Joule heating-induced switched-back regions in OLEDs

2020, Kirch, Anton, Fische, Axel, Liero, Matthias, Fuhrmann, Jürgen, Glitzky, Annegret, Reineke, Sebastian

Organic light-emitting diodes (OLEDs) have become a major pixel technology in the display sector, with products spanning the entire range of current panel sizes. The ability to freely scale the active area to large and random surfaces paired with flexible substrates provides additional application scenarios for OLEDs in the general lighting, automotive, and signage sectors. These applications require higher brightness and, thus, current density operation compared to the specifications needed for general displays. As extended transparent electrodes pose a significant ohmic resistance, OLEDs suffering from Joule self-heating exhibit spatial inhomogeneities in electrical potential, current density, and hence luminance. In this article, we provide experimental proof of the theoretical prediction that OLEDs will display regions of decreasing luminance with increasing driving current. With a two-dimensional OLED model, we can conclude that these regions are switched back locally in voltage as well as current due to insufficient lateral thermal coupling. Experimentally, we demonstrate this effect in lab-scale devices and derive that it becomes more severe with increasing pixel size, which implies its significance for large-area, high-brightness use cases of OLEDs. Equally, these non-linear switching effects cannot be ignored with respect to the long-term operation and stability of OLEDs; in particular, they might be important for the understanding of sudden-death scenarios. © 2020, The Author(s).

Loading...
Thumbnail Image
Item

Drift–diffusion simulation of S-shaped current–voltage relations for organic semiconductor devices

2020, Doan, Duy Hai, Fischer, Axel, Fuhrmann, Jürgen, Glitzky, Annegret, Liero, Matthias

We present an electrothermal drift–diffusion model for organic semiconductor devices with Gauss–Fermi statistics and positive temperature feedback for the charge carrier mobilities. We apply temperature-dependent Ohmic contact boundary conditions for the electrostatic potential and discretize the system by a finite volume based generalized Scharfetter–Gummel scheme. Using path-following techniques, we demonstrate that the model exhibits S-shaped current–voltage curves with regions of negative differential resistance, which were only recently observed experimentally. © 2020, The Author(s).

Loading...
Thumbnail Image
Item

A model of an electrochemical flow cell with porous layer

2009, Ehrhardt, Matthias, Fuhrmann, Jürgen, Linke, Alexander

In this paper we discuss three different mathematical models for fluid-porous interfaces in a simple channel geometry that appears e.g. in thin-layer channel flow cells. Here the difficulties arise from the possibly different orders of the corresponding differential operators in the different domains. A finite volume discretization of this model allows to calculate the limiting current of the H_2 oxidation in a porous electrode with platinum catalyst particles.

Loading...
Thumbnail Image
Item

Time-dependent simulation of thermal lensing in high-power broad-area semiconductor lasers

2019, Zeghuzi, Anissa, Wünsche, Hans-Jürgen, Wenzel, Hans, Radziunas, Mindaugas, Fuhrmann, Jürgen, Klehr, Andreas, Bandelow, Uwe, Knigge, Andrea

We propose a physically realistic and yet numerically applicable thermal model to account for short and long term self-heating within broad-area lasers. Although the temperature increase is small under pulsed operation, a waveguide that is formed within a few-ns-long pulse can result in a transition from a gain-guided to an index-guided structure, leading to near and far field narrowing. Under continuous wave operation the longitudinally varying temperature profile is obtained self-consistently. The resulting unfavorable narrowing of the near field can be successfully counteracted by etching trenches.

Loading...
Thumbnail Image
Item

A continuum model for yttria-stabilized zirconia incorporating triple phase boundary, lattice structure and immobile oxide ions

2019, Vágner, Petr, Guhlke, Clemens, Miloš, Vojtěch, Müller, Rüdiger, Fuhrmann, Jürgen

A continuum model for yttria-stabilized zirconia (YSZ) in the framework of non-equilibrium thermodynamics is developed. Particular attention is given to (i) modeling of the YSZ-metal-gas triple phase boundary, (ii) incorporation of the lattice structure and immobile oxide ions within the free energy model and (iii) surface reactions. A finite volume discretization method based on modified Scharfetter-Gummel fluxes is derived in order to perform numerical simulations. The model is used to study the impact of yttria and immobile oxide ions on the structure of the charged boundary layer and the double layer capacitance. Cyclic voltammograms of an air-half cell are simulated to study the effect of parameter variations on surface reactions, adsorption and anion diffusion. © 2019, The Author(s).

Loading...
Thumbnail Image
Item

Electrothermal Tristability Causes Sudden Burn-In Phenomena in Organic LEDs

2021, Kirch, Anton, Fischer, Axel, Liero, Matthias, Fuhrmann, Jürgen, Glitzky, Annegret, Reineke, Sebastian

Organic light-emitting diodes (OLEDs) have been established as a mature display pixel technology. While introducing the same technology in a large-area form factor to general lighting and signage applications, some key questions remain unanswered. Under high-brightness conditions, OLED panels were reported to exhibit nonlinear electrothermal behavior causing lateral brightness inhomogeneities and even regions of switched-back luminance. Also, the physical understanding of sudden device failure and burn-ins is still rudimentary. A safe and stable operation of lighting tiles, therefore, requires an in-depth understanding of these physical phenomena. Here, it is shown that the electrothermal treatment of thin-film devices allows grasping the underlying physics. Configurations of OLEDs with different lateral dimensions are studied as a role model and it is reported that devices exceeding a certain panel size develop three stable, self heating-induced operating branches. Switching between them causes the sudden formation of dark spots in devices without any preexisting inhomogeneities. A current-stabilized operation mode is commonly used in the lighting industry, as it ensures degradation-induced voltage adjustments. Here, it is demonstrated that a tristable operation always leads to destructive switching, independent of applying constant currents or voltages. With this new understanding of the effects at high operation brightness, it will be possible to adjust driving schemes accordingly, design more resilient system integrations, and develop additional failure mitigation strategies. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH

Loading...
Thumbnail Image
Item

A numerical method for mass conservative coupling between fluid flow and solute transport

2010, Fuhrmann, Jürgen, Langmach, Hartmut, Linke, Alexander

We present a new coupled discretization approach for species transport in an incompressible fluid. The Navier-Stokes equations for the flow are discretized by the divergence-free Scott-Vogelius element on barycentrically refined meshes guaranteeing LBB stability. The convection-diffusion equation for species transport is discretized by the Voronoi finite volume method. In accordance to the continuous setting, due to the exact integration of the normal component of the flow through the Voronoi surfaces, the species concentration fulfills discrete global and local maximum principles. Besides of the the numerical scheme itself, we present important aspects of its implementation. Further, for the case of homogeneous Dirichlet boundary conditions, we give a convergence proof for the coupled scheme. We report results of the application of the scheme to the interpretation of limiting current measurements in an electrochemical flow cell with cylindrical shape.

Loading...
Thumbnail Image
Item

Modeling Polycrystalline Electrode-electrolyte Interfaces: The Differential Capacitance

2020, Müller, Rüdiger, Fuhrmann, Jürgen, Landstorfer, Manuel

We present and analyze a model for polycrystalline electrode surfaces based on an improved continuum model that takes finite ion size and solvation into account. The numerical simulation of finite size facet patterns allows to study two limiting cases: While for facet size diameter dfacet →0 we get the typical capacitance of a spatially homogeneous but possible amorphous or liquid surface, in the limit 1[nm] < dfacet, an ensemble of non-interacting single crystal surfaces is approached. Already for moderate size of the facet diameters, the capacitance is remarkably well approximated by the classical approach of adding the single crystal capacities of the contributing facets weighted by their respective surface fraction. As a consequence, the potential of zero charge is not necessarily attained at a local minimum of capacitance, but might be located at a local capacitance maximum instead. Moreover, the results show that surface roughness can be accurately taken into account by multiplication of the ideally flat polycrystalline surface capacitance with a single factor. In particular, we find that the influence of the actual geometry of the facet pattern in negligible and our theory opens the way to a stochastic description of complex real polycrystal surfaces. © 2020 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited.

Loading...
Thumbnail Image
Item

Entropy and convergence analysis for two finite volume schemes for a Nernst–Planck–Poisson system with ion volume constraints

2022, Gaudeul, Benoît, Fuhrmann, Jürgen

In this paper, we consider a drift-diffusion system with cross-coupling through the chemical potentials comprising a model for the motion of finite size ions in liquid electrolytes. The drift term is due to the self-consistent electric field maintained by the ions and described by a Poisson equation. We design two finite volume schemes based on different formulations of the fluxes. We also provide a stability analysis of these schemes and an existence result for the corresponding discrete solutions. A convergence proof is proposed for non-degenerate solutions. Numerical experiments show the behavior of these schemes.

Loading...
Thumbnail Image
Item

Experimental and numerical model study of the limiting current in a channel flow cell with a cirvular electrode

2008, Fuhrmann, Jürgen, Zhao, H., Holzbecher, E., Langmach, H., Chojak, M., Halseid, R., Jusys, Z., Behm, R.J.

We describe first measurement in a novel thin-layer channel flow cell designed for the investigation of heterogeneous electrocatalysis on porous catalysts. For the interpretation of the measurements, a macroscopic model for coupled species transport and reaction, which can be solved numerically, is feasible. In this paper, we focus on the limiting current. We compare numerical solutions of a macroscopic model to a generalization of a Leveque-type asymptotic estimate for circular electrodes, and to measurements obtained in the aforementioned flow cell. We establish, that on properly aligned meshes, the numerical method reproduces the asymptotic estimate. Furthermore, we demonstrate, that the measurements are partially performed in the sub-asymptotic regime, in which the boundary layer thickness exceeds the cell height. Using the inlet concentration and the diffusion coefficient from literature, we overestimate the limiting current. On the other hand, the use of fitted parameters leads to perfect agreement between model and experiment.