Search Results

Now showing 1 - 6 of 6
Loading...
Thumbnail Image
Item

Taking some heat off the NDCs? The limited potential of additional short-lived climate forcers’ mitigation

2019, Harmsen, Mathijs, Fricko, Oliver, Hilaire, Jérôme, van Vuuren, Detlef P., Drouet, Laurent, Durand-Lasserve, Olivier, Fujimori, Shinichiro, Keramidas, Kimon, Klimont, Zbigniew, Luderer, Gunnar, Aleluia Reis, Lara, Riahi, Keywan, Sano, Fuminori, Smith, Steven J.

Several studies have shown that the greenhouse gas reduction resulting from the current nationally determined contributions (NDCs) will not be enough to meet the overall targets of the Paris Climate Agreement. It has been suggested that more ambition mitigations of short-lived climate forcer (SLCF) emissions could potentially be a way to reduce the risk of overshooting the 1.5 or 2 Â°C target in a cost-effective way. In this study, we employ eight state-of-the-art integrated assessment models (IAMs) to examine the global temperature effects of ambitious reductions of methane, black and organic carbon, and hydrofluorocarbon emissions. The SLCFs measures considered are found to add significantly to the effect of the NDCs on short-term global mean temperature (GMT) (in the year 2040: − 0.03 to − 0.15 Â°C) and on reducing the short-term rate-of-change (by − 2 to 15%), but only a small effect on reducing the maximum temperature change before 2100. This, because later in the century under assumed ambitious climate policy, SLCF mitigation is maximized, either directly or indirectly due to changes in the energy system. All three SLCF groups can contribute to achieving GMT changes. © 2019, The Author(s).

Loading...
Thumbnail Image
Item

The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview

2016, Riahi, Keywan, van Vuuren, Detlef P., Kriegler, Elmar, Edmonds, Jae, O’Neill, Brian C., Fujimori, Shinichiro, Bauer, Nico, Calvin, Katherine, Dellink, Rob, Fricko, Oliver, Lutz, Wolfgang, Popp, Alexander, Crespo Cuaresma, Jesus, KC, Samir, Leimbach, Marian, Jiang, Leiwen, Kram, Tom, Rao, Shilpa, Emmerling, Johannes, Ebi, Kristie, Hasegawa, Tomoko, Havlik, Petr, Humpenöder, Florian, Aleluia Da Silva, Lara, Smith, Steve, Stehfest, Elke, Bosetti, Valentina, Eom, Jiyong, Gernaat, David, Masui, Toshihiko, Rogelj, Joeri, Strefler, Jessica, Drouet, Laurent, Krey, Volker, Luderer, Gunnar, Harmsen, Mathijs, Takahashi, Kiyoshi, Baumstark, Lavinia, Doelman, Jonathan C., Kainuma, Mikiko, Klimont, Zbigniew, Marangoni, Giacomo, Lotze-Campen, Hermann, Obersteiner, Michael, Tabeau, Andrzej, Tavoni, Massimo

This paper presents the overview of the Shared Socioeconomic Pathways (SSPs) and their energy, land use, and emissions implications. The SSPs are part of a new scenario framework, established by the climate change research community in order to facilitate the integrated analysis of future climate impacts, vulnerabilities, adaptation, and mitigation. The pathways were developed over the last years as a joint community effort and describe plausible major global developments that together would lead in the future to different challenges for mitigation and adaptation to climate change. The SSPs are based on five narratives describing alternative socio-economic developments, including sustainable development, regional rivalry, inequality, fossil-fueled development, and middle-of-the-road development. The long-term demographic and economic projections of the SSPs depict a wide uncertainty range consistent with the scenario literature. A multi-model approach was used for the elaboration of the energy, land-use and the emissions trajectories of SSP-based scenarios. The baseline scenarios lead to global energy consumption of 400–1200 EJ in 2100, and feature vastly different land-use dynamics, ranging from a possible reduction in cropland area up to a massive expansion by more than 700 million hectares by 2100. The associated annual CO2 emissions of the baseline scenarios range from about 25 GtCO2 to more than 120 GtCO2 per year by 2100. With respect to mitigation, we find that associated costs strongly depend on three factors: (1) the policy assumptions, (2) the socio-economic narrative, and (3) the stringency of the target. The carbon price for reaching the target of 2.6 W/m2 that is consistent with a temperature change limit of 2 Â°C, differs in our analysis thus by about a factor of three across the SSP marker scenarios. Moreover, many models could not reach this target from the SSPs with high mitigation challenges. While the SSPs were designed to represent different mitigation and adaptation challenges, the resulting narratives and quantifications span a wide range of different futures broadly representative of the current literature. This allows their subsequent use and development in new assessments and research projects. Critical next steps for the community scenario process will, among others, involve regional and sectoral extensions, further elaboration of the adaptation and impacts dimension, as well as employing the SSP scenarios with the new generation of earth system models as part of the 6th climate model intercomparison project (CMIP6).

Loading...
Thumbnail Image
Item

Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century

2019, Gidden, Matthew J., Riahi, Keywan, Smith, Steven J., Fujimori, Shinichiro, Luderer, Gunnar, Kriegler, Elmar, van Vuuren, Detlef P., van den Berg, Maarten, Feng, Leyang, Klein, David, Calvin, Katherine, Doelman, Jonathan C., Frank, Stefan, Fricko, Oliver, Harmsen, Mathijs, Hasegawa, Tomoko, Havlik, Petr, Hilaire, Jérôme, Hoesly, Rachel, Horing, Jill, Popp, Alexander, Stehfest, Elke, Takahashi, Kiyoshi

We present a suite of nine scenarios of future emissions trajectories of anthropogenic sources, a key deliverable of the ScenarioMIP experiment within CMIP6. Integrated assessment model results for 14 different emissions species and 13 emissions sectors are provided for each scenario with consistent transitions from the historical data used in CMIP6 to future trajectories using automated harmonization before being downscaled to provide higher emissions source spatial detail. We find that the scenarios span a wide range of end-of-century radiative forcing values, thus making this set of scenarios ideal for exploring a variety of warming pathways. The set of scenarios is bounded on the low end by a 1.9 W m−2 scenario, ideal for analyzing a world with end-of-century temperatures well below 2 ∘C, and on the high end by a 8.5 W m−2 scenario, resulting in an increase in warming of nearly 5 ∘C over pre-industrial levels. Between these two extremes, scenarios are provided such that differences between forcing outcomes provide statistically significant regional temperature outcomes to maximize their usefulness for downstream experiments within CMIP6. A wide range of scenario

Loading...
Thumbnail Image
Item

Future air pollution in the Shared Socio-economic Pathways

2016, Rao, Shilpa, Klimont, Zbigniew, Smith, Steven J., Van Dingenen, Rita, Dentener, Frank, Bouwman, Lex, Riahi, Keywan, Amann, Markus, Bodirsky, Benjamin Leon, van Vuuren, Detlef P., Aleluia Reis, Lara, Calvin, Katherine, Drouet, Laurent, Fricko, Oliver, Fujimori, Shinichiro, Gernaat, David, Havlik, Petr, Harmsen, Mathijs, Hasegawa, Tomoko, Heyes, Chris, Hilaire, Jérôme, Luderer, Gunnar, Masui, Toshihiko, Stehfest, Elke, Strefler, Jessica, van der Sluis, Sietske, Tavoni, Massimo

Emissions of air pollutants such as sulfur and nitrogen oxides and particulates have significant health impacts as well as effects on natural and anthropogenic ecosystems. These same emissions also can change atmospheric chemistry and the planetary energy balance, thereby impacting global and regional climate. Long-term scenarios for air pollutant emissions are needed as inputs to global climate and chemistry models, and for analysis linking air pollutant impacts across sectors. In this paper we present methodology and results for air pollutant emissions in Shared Socioeconomic Pathways (SSP) scenarios. We first present a set of three air pollution narratives that describe high, central, and low pollution control ambitions over the 21st century. These narratives are then translated into quantitative guidance for use in integrated assessment models. The resulting pollutant emission trajectories under the SSP scenarios cover a wider range than the scenarios used in previous international climate model comparisons. In the SSP3 and SSP4 scenarios, where economic, institutional and technological limitations slow air quality improvements, global pollutant emissions over the 21st century can be comparable to current levels. Pollutant emissions in the SSP1 scenarios fall to low levels due to the assumption of technological advances and successful global action to control emissions.

Loading...
Thumbnail Image
Item

A protocol for an intercomparison of biodiversity and ecosystem services models using harmonized land-use and climate scenarios

2018, Kim, HyeJin, Rosa, Isabel M. D., Alkemade, Rob, Leadley, Paul, Hurtt, George, Popp, Alexander, van Vuuren, Detlef P., Anthoni, Peter, Arneth, Almut, Baisero, Daniele, Caton, Emma, Chaplin-Kramer, Rebecca, Chini, Louise, De Palma, Adriana, Di Fulvio, Fulvio, Di Marco, Moreno, Espinoza, Felipe, Ferrier, Simon, Fujimori, Shinichiro, Gonzalez, Ricardo E., Gueguen, Maya, Guerra, Carlos, Harfoot, Mike, Harwood, Thomas D., Hasegawa, Tomoko, Haverd, Vanessa, Havlík, Petr, Hellweg, Stefanie, Hill, Samantha L. L., Hirata, Akiko, Hoskins, Andrew J., Janse, Jan H., Jetz, Walter, Johnson, Justin A., Krause, Andreas, Leclère, David, Martins, Ines S., Matsui, Tetsuya, Merow, Cory, Obersteiner, Michael, Ohashi, Haruka, Poulter, Benjamin, Purvis, Andy, Quesada, Benjamin, Rondinini, Carlo, Schipper, Aafke M., Sharp, Richard, Takahashi, Kiyoshi, Thuiller, Wilfried, Titeux, Nicolas, Visconti, Piero, Ware, Christopher, Wolf, Florian, Pereira, Henrique M.

To support the assessments of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), the IPBES Expert Group on Scenarios and Models is carrying out an intercomparison of biodiversity and ecosystem services models using harmonized scenarios (BES-SIM). The goals of BES-SIM are (1) to project the global impacts of land-use and climate change on biodiversity and ecosystem services (i.e., nature's contributions to people) over the coming decades, compared to the 20th century, using a set of common metrics at multiple scales, and (2) to identify model uncertainties and research gaps through the comparisons of projected biodiversity and ecosystem services across models. BES-SIM uses three scenarios combining specific Shared Socio-economic Pathways (SSPs) and Representative Concentration Pathways (RCPs)-SSP1xRCP2.6, SSP3xRCP6.0, SSP5xRCP8.6-to explore a wide range of land-use change and climate change futures. This paper describes the rationale for scenario selection, the process of harmonizing input data for land use, based on the second phase of the Land Use Harmonization Project (LUH2), and climate, the biodiversity and ecosystem services models used, the core simulations carried out, the harmonization of the model output metrics, and the treatment of uncertainty. The results of this collaborative modeling project will support the ongoing global assessment of IPBES, strengthen ties between IPBES and the Intergovernmental Panel on Climate Change (IPCC) scenarios and modeling processes, advise the Convention on Biological Diversity (CBD) on its development of a post-2020 strategic plans and conservation goals, and inform the development of a new generation of nature-centred scenarios.

Loading...
Thumbnail Image
Item

Looking under the hood: A comparison of techno-economic assumptions across national and global integrated assessment models

2018, Krey, Volker, Guo, Fei, Kolp, Peter, Zhou, Wenji, Schaeffer, Roberto, Awasthy, Aayushi, Bertram, Christoph, de Boer, Harmen-Sytze, Fragkos, Panagiotis, Fujimori, Shinichiro, He, Chenmin, Iyer, Gokul, Keramidas, Kimon, Köberle, Alexandre C., Oshiro, Ken, Reis, Lara Aleluia, Shoai-Tehrani, Bianka, Vishwanathan, Saritha, Capros, Pantelis, Drouet, Laurent, Edmonds, James E., Garg, Amit, Gernaat, David E.H.J., Jiang, Kejun, Kannavou, Maria, Kitous, Alban, Kriegler, Elmar, Luderer, Gunnar, Mathur, Ritu, Muratori, Matteo, Sano, Fuminori, van Vuuren, Detlef P.

Integrated assessment models are extensively used in the analysis of climate change mitigation and are informing national decision makers as well as contribute to international scientific assessments. This paper conducts a comprehensive review of techno-economic assumptions in the electricity sector among fifteen different global and national integrated assessment models. Particular focus is given to six major economies in the world: Brazil, China, the EU, India, Japan and the US. The comparison reveals that techno-economic characteristics are quite different across integrated assessment models, both for the base year and future years. It is, however, important to recognize that techno-economic assessments from the literature exhibit an equally large range of parameters as the integrated assessment models reviewed. Beyond numerical differences, the representation of technologies also differs among models, which needs to be taken into account when comparing numerical parameters. While desirable, it seems difficult to fully harmonize techno-economic parameters across a broader range of models due to structural differences in the representation of technology. Therefore, making techno-economic parameters available in the future, together with of the technology representation as well as the exact definitions of the parameters should become the standard approach as it allows an open discussion of appropriate assumptions. © 2019 The Authors