Search Results

Now showing 1 - 4 of 4
  • Item
    Generation and characterisation of few-pulse attosecond pulse trains at 100 kHz repetition rate
    (Bristol : IOP Publ., 2020) Osolodkov, Mikhail; Furch, Federico J.; Schell, Felix; Šušnjar, Peter; Cavalcante, Fabio; Menoni, Carmen S.; Schulz, Claus P.; Witting, Tobias; Vrakking, Marc J.J.
    The development of attosecond pump-probe experiments at high repetition rate requires the development of novel attosecond sources maintaining a sufficient number of photons per pulse. We use 7 fs, 800 nm pulses from a non-collinear optical parametric chirped pulse amplification laser system to generate few-pulse attosecond pulse trains (APTs) with a flux of >106 photons per shot in the extreme ultraviolet at a repetition rate of 100 kHz. The pulse trains have been fully characterised by recording frequency-resolved optical gating for complete reconstruction of attosecond bursts (FROG-CRAB) traces with a velocity map imaging spectrometer. For the pulse retrieval from the FROG-CRAB trace a new ensemble retrieval algorithm has been employed that enables the reconstruction of the shape of the APTs in the presence of carrier envelope phase fluctuations of the few-cycle laser system. © 2020 The Author(s). Published by IOP Publishing Ltd.
  • Item
    Spatio-temporal characterisation of a 100 kHz 24 W sub-3-cycle NOPCPA laser system
    (Bristol : IOP Publ., 2018-02-26) Witting, Tobias; Furch, Federico J.; Vrakking, Marc J.J.
    In recent years, OPCPA and NOPCPA laser systems have shown the potential to supersede Ti:sapphire plus post-compression based laser systems to drive next generation attosecond light sources via direct amplification of few-cycle pulses to high pulse energies at high repetition rates. In this paper, we present a sub 3-cycle, 100 kHz, 24 W NOPA laser system and characterise its spatio-temporal properties using the SEA-F-SPIDER technique. Our results underline the importance of spatio-temporal diagnostics for these emerging laser systems.
  • Item
    Strong field ionization of small hydrocarbon chains with full 3D momentum analysis
    (Bristol : IOP Publ., 2015) Schulz, Claus Peter; Birkner, Sascha; Furch, Federico J.; Anderson, Alexandria; Mikosch, Jochen; Schell, Felix; Vrakking, Marc J. J.
    Strong field ionization of small hydrocarbon chains is studied in a kinematic complete experiment using a reaction microscope. By coincidence detection of ions and electrons different ionization continua populated during the ionization process are identified. In addition, photoelectron momentum distributions from laser-aligned molecules allow to characterize the electron wavepackets emerging from different Dyson orbitals.
  • Item
    Retrieval of attosecond pulse ensembles from streaking experiments using mixed state time-domain ptychography
    (Bristol : IOP Publ., 2020) Witting, Tobias; Furch, Federico J.; Kornilov, Oleg; Osolodkov, Mikhail; Schulz, Claus P.; Vrakking, Marc J.J.
    The electric field of attosecond laser pulses can be retrieved from laser-dressed photoionisation measurements, where electron wavepackets that result from single-photon ionisation by the attosecond pulse in the presence of a dressing field are produced. In case of fluctuating dressing laser and/or attosecond pulses, e.g. due to pulse-to-pulse fluctuations of the carrier envelope phase of the infrared laser pulse, commonly applied retrieval algorithms result in the erroneous extraction of the pulse fields. We present a mixed state time-domain ptychography algorithm for the retrieval of pulse ensembles from attosecond streaking experiments. © 2020 The Author(s). Published by IOP Publishing Ltd.