Search Results

Now showing 1 - 3 of 3
  • Item
    Controlling Optical and Catalytic Activity of Genetically Engineered Proteins by Ultrasound
    (Weinheim : Wiley-VCH, 2021) Zhou, Yu; Huo, Shuaidong; Loznik, Mark; Göstl, Robert; Boersma, Arnold J.; Herrmann, Andreas
    Ultrasound (US) produces cavitation-induced mechanical forces stretching and breaking polymer chains in solution. This type of polymer mechanochemistry is widely used for synthetic polymers, but not biomacromolecules, even though US is biocompatible and commonly used for medical therapy as well as in vivo imaging. The ability to control protein activity by US would thus be a major stepping-stone for these disciplines. Here, we provide the first examples of selective protein activation and deactivation by means of US. Using GFP as a model system, we engineer US sensitivity into proteins by design. The incorporation of long and highly charged domains enables the efficient transfer of force to the protein structure. We then use this principle to activate the catalytic activity of trypsin by inducing the release of its inhibitor. We expect that this concept to switch “on” and “off” protein activity by US will serve as a blueprint to remotely control other bioactive molecules. © 2020 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH
  • Item
    Multicolor Mechanofluorophores for the Quantitative Detection of Covalent Bond Scission in Polymers
    (Weinheim : Wiley-VCH, 2021) Baumann, Christoph; Stratigaki, Maria; Centeno, Silvia P.; Göstl, Robert
    The fracture of polymer materials is a multiscale process starting with the scission of a single molecular bond advancing to a site of failure within the bulk. Quantifying the bonds broken during this process remains a big challenge yet would help to understand the distribution and dissipation of macroscopic mechanical energy. We here show the design and synthesis of fluorogenic molecular optical force probes (mechanofluorophores) covering the entire visible spectrum in both absorption and emission. Their dual fluorescent character allows to track non-broken and broken bonds in dissolved and bulk polymers by fluorescence spectroscopy and microscopy. Importantly, we develop an approach to determine the absolute number and relative fraction of intact and cleaved bonds with high local resolution. We anticipate that our mechanofluorophores in combination with our quantification methodology will allow to quantitatively describe fracture processes in materials ranging from soft hydrogels to high-performance polymers. © 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH
  • Item
    Methods for Exerting and Sensing Force in Polymer Materials Using Mechanophores
    (Weinheim : Wiley-VCH, 2020) Stratigaki, Maria; Göstl, Robert
    In recent years, polymer mechanochemistry has evolved as a methodology to provide insights into the action-reaction relationships of polymers and polymer-based materials and composites in terms of macroscopic force application (stress) and subsequent deformation (strain) through a mechanophore-assisted coupling of mechanical and chemical phenomena. The perplexity of the process, however, from the viewpoint of mechanophore activation via a molecular-scaled disruption of the structure that yields a macroscopically detectable optical signal, renders this otherwise rapidly evolving field challenging. Motivated by this, we highlight here recent advancements of polymer mechanochemistry with particular focus on the establishment of methodologies for the efficient activation and quantification of mechanophores and anticipate to aptly pinpoint unresolved matters and limitations of the respective approaches, thus highlighting possible developments. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.