Search Results

Now showing 1 - 2 of 2
  • Item
    Aging in the GREM-like trap model
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Gayrard, Veronique; Gün, Onur
    The GREM-like trap model is a continuous time Markov jump process on the leaves of a finite volume L-level tree whose transition rates depend on a trapping landscape built on the vertices of the whole tree. We prove that the natural two-time correlation function of the dynamics ages in the infinite volume limit and identify the limiting function. Moreover, we take the limit L→ ∞ of the two-time correlation function of the infinite volume L-level tree. The aging behavior of the dynamics is characterized by a collection of clock processes, one for each level of the tree. We show that for any L, the joint law of the clock processes converges. Furthermore, any such limit can be expressed through Neveu's continuous state branching process. Hence, the latter contains all the information needed to describe aging in the GREM-like trap model both for finite and infinite levels.
  • Item
    Extremal aging for trap models
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Gün, Onur
    In the seminal work [5], Ben Arous and Cerný give a general characterization of aging for trap models in terms of α-stable subordinators with α ∈ (0,1). Some of the important examples that fall into this universality class are Random Hopping Time (RHT) dynamics of Random Energy Model (REM) and p-spin models observed on exponential time scales. In this paper, we explain a different aging mechanism in terms of extremal processes that can be seen as the extension of α-stable aging to the case α=0. We apply this mechanism to the RHT dynamics of the REM for a wide range of temperature and time scales. The other examples that exhibit extremal aging include the Sherrington Kirkpatrick (SK) model and p-spin models [6, 9], and biased random walk on critical Galton-Watson trees conditioned to survive [11].