Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Evaluation of spectral induced polarization field measurements in time and frequency domain

2020, Martin, Tina, Günther, Thomas, Orozco, Adrian Flores, Dahlin, Torleif

Spectral induced polarization (SIP) measurements have been demonstrated to correlate with important parameters in hydrogeological and environmental investigations. Although SIP measurements were often collected in the frequency domain (FDIP), recent developments have demonstrated the capabilities to solve for the frequency-dependence of the complex conductivity through measurements collected in the time domain (TDIP). Therefore, the aim of our field investigations is a comparison of the measured frequency-dependence at a broad frequency range resolved through FDIP and TDIP. In contrast to previous studies, we conducted measurements with different instruments and measuring technologies for both FDIP and TDIP. This allows for investigating the robustness of different measurements and assessing various sources of errors, for the assessment of the advantages and drawbacks from different measuring techniques. Our results demonstrate that data collected through different instruments are consistent. Apparent resistivity measurements as well as the inversion results revealed quantitatively the same values for all instruments. The measurements of the IP effect are also comparable, particularly FDIP readings in the low frequencies (< 10 Hz) revealed to be quantitatively the same for different instruments. TDIP measurements are consistent for data collected with both devices. As expected, the spatial distribution of the values is also consistent for low frequency data (in FDIP) and late times measurements in TDIP (> 0.1 s). However, data quality for higher frequencies in FDIP (i.e., early times in TDIP) show larger variations, which reflects the differences between the instruments to deal with the electromagnetic contamination of the IP data. Concluded in general, the different instruments and measuring techniques can provide consistent responses for varying signal-to-noise ratio and measuring configurations. © 2020 The Authors

Loading...
Thumbnail Image
Item

Comparison of novel semi-airborne electromagnetic data with multi-scale geophysical, petrophysical and geological data from Schleiz, Germany

2020, Steuer, Annika, Smirnova, Maria, Becken, Michael, Schiffler, Markus, Günther, Thomas, Rochlitz, Raphael, Yogeshwar, Pritam, Mörbe, Wiebke, Siemon, Bernhard, Costabel, Stephan, Preugschat, Benedikt, Ibs-von Seht, Malte, Zampa, Luigi Sante, Müller, Franz

In the framework of the Deep Electromagnetic Sounding for Mineral EXploration (DESMEX) project, we carried out multiple geophysical surveys from regional to local scales in a former mining area in the state of Thuringia, Germany. We prove the applicability of newly developed semi-airborne electromagnetic (EM) systems for mineral exploration by cross-validating inversion results with those of established airborne and ground-based investigation techniques. In addition, supporting petrophysical and geological information to our geophysical measurements allowed the synthesis of all datasets over multiple scales. An initial regional-scale reconnaissance survey was performed with BGR's standard helicopter-borne geophysical system deployed with frequency-domain electromagnetic (HEM), magnetic and radiometric sensors. In addition to geological considerations, the HEM results served as base-line information for the selection of an optimal location for the intermediate-scale semi-airborne EM experiments. The semi-airborne surveys utilized long grounded transmitters and two independent airborne receiver instruments: induction coil magnetometers and SQUID sensors. Due to the limited investigation depth of the HEM method, local-scale electrical resistivity tomography (ERT) and long-offset transient electromagnetic (LOTEM) measurements were carried out on a reference profile, enabling the validation of inversion results at greater depths. The comparison of all inversion results provided a consistent overall resistivity distribution. It further confirmed that both semi-airborne receiver instruments achieve the bandwidth and sensitivity required for the investigation of the resistivity structure down to 1 km depth and therewith the detection of deeply seated earth resources. A 3D geological model, lithological and geophysical borehole logs as well as petrophysical investigations were integrated to interpret of the geophysical results. Distinct highly-conductive anomalies with resistivities of less than 10 Om were identified as alum shales over all scales. Apart from that, the petrophysical investigations exhibited that correlating geophysical and geological information using only one single parameter, such as the electrical resistivity, is hardly possible. Therefore, we developed a first approach based on clustering methods and self-organizing maps (SOMs) that allowed us to assign geological units at the surface to a given combination of geophysical and petrophysical parameters, obtained on different scales. © 2020 The Authors